(12分)在四棱錐中,底面ABCD是矩形,PA=AD=4,AB=2,PB=,PD=。E是PD的中點。

(1)求證:AE⊥平面PCD;
(2)求二面角的平面角的大小的余弦值;
(3)在線段BC上是否存在點F,使得三棱錐F—ACE的體積恰為
若存在,試確定點F的位置;若不存在,請說明理由。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四面體ABCD中,O,E分別為BD,BC的中點,CA=CB=CD=BD=2,AB=AD=

(1)求證:AO⊥平面BCD;
(2)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

降雨量是指水平地面單位面積上所降水的深度,現(xiàn)用上口直徑為32cm,底面直徑為24cm、深度為35cm的圓臺形水桶來測量降雨量,如果在一次降雨過程中,此桶中的雨水深度為桶深的四分之一,求此次降雨量為多少?(圓臺的體積公式為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本題12分)
長方體中,,是底面對角線的交點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題15分)
如圖在三棱錐P-ABC中,PA 分別在棱,

(1)求證:BC
(2)當D為PB中點時,求AD與平面PAC所成的角的余弦值;
(3)是否存在點E,使得二面角A-DE-P為直二面角,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正三角形ABC中, D,E,F(xiàn)分別為AB,BC,AC的中點,G,H,I分別為DE,F(xiàn)C,EF的中點,將△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為
A.B.a(chǎn)rccosC.D.a(chǎn)rccos

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三棱錐的棱長都相等,分別是棱的中點,則所成的角為 (   ) .     
                              
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知直角梯形中,
,垂足為,的中點,現(xiàn)將沿折疊,使得

(1)求證:;
(2)設(shè)四棱錐D-ABCE的體積為V,其外接球體積為,求V的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)如圖,已知斜三棱柱,,在底面上的射影恰為的中點,又知.
(I)求證:;
(II)求到平面的距離;
(III)求二面角.

查看答案和解析>>

同步練習冊答案