【題目】已知函數(shù)

1)若,求函數(shù)的極值和單調(diào)區(qū)間;

2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.

【答案】1取得極小值為的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

2.

【解析】

1)求函數(shù)的導數(shù),令導數(shù)等于零,解方程,再求出函數(shù)的導數(shù)和駐點,然后列表討論,求函數(shù)的單調(diào)區(qū)間和極值;

2)若在區(qū)間上存在一點,使得成立,其充要條件是在區(qū)間上的最小值小于即可.利用導數(shù)研究函數(shù)在區(qū)間上的最小值,先求出導函數(shù),然后討論研究函數(shù)在上的單調(diào)性,將的極值點與區(qū)間的端點比較,確定其最小的極值點.

解:的定義域為,

因為,

1)當時,,令,得

的定義域為

,的變化情況如下表:

1

0

單調(diào)遞減

極小值

單調(diào)遞增

所以時,取得極小值為

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

2)因為,且

,得,

若在區(qū)間上存在一點,使得成立,

其充要條件是在區(qū)間上的最小值小于0即可.

,即時,成立,

所以,在區(qū)間上單調(diào)遞減,

在區(qū)間上的最小值為,

,得,即

,即時,

,則成立,

所以在區(qū)間上單調(diào)遞減,

所以,在區(qū)間上的最小值為

顯然,在區(qū)間上的最小值小于不成立.

,即時,則有

單調(diào)遞減

極小值

單調(diào)遞增

所以在區(qū)間上的最小值為

,

,解得,即

綜上,由可知符合題意.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于命題的說法錯誤的是( )

A. 命題“若,則”的逆否命題為“若,則

B. ”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件

C. 命題“,使得”的否定是“,均有

D. “若的極值點,則”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

為了預(yù)測印刷千冊時每冊的成本費,建立了兩個回歸模型,.

(1)根據(jù)散點圖,你認為選擇哪個模型預(yù)測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測印刷千冊時每冊的成本費.

附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒子里裝有4張卡片,上面分別寫著數(shù)字1,12,2,每張卡片被取到的概率相等.先從盒子中任取1張卡片,記下上面的數(shù)字,然后放回盒子內(nèi)攪勻,再從盒子中隨機任取1張卡片,記下它上面的數(shù)字.

1)求的概率;

2)設(shè)“函數(shù)在區(qū)間內(nèi)有且只有一個零點”為事件,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀下面一道題目的證明,指出其中的一處錯誤。題目:平面上有六個點,任何三點都是三邊互不相等三角形的頂點,則這些三角形中有一個的最短邊又是另一個三角形的最長邊。證明:第一步,對已知的六個點作兩兩連線,可以得出15條邊,記為,,…,.第二步,由于任何三點組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設(shè).第三步,由于“任何三點都是三邊互不相等三角形的頂點”,因此,任取三條邊都可以組成三角形,則、組成的三角形的最長邊,也是、、組成的三角形的最短邊,命題得證.這三步中,第______步有錯誤,理由是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(I)求函數(shù)的極值;

(II)若方程僅有一個實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,傾斜角為的直線經(jīng)過拋物線的焦點,且與拋物線交于兩點.

1)求拋物線的焦點的坐標及準線的方程;

2)若為銳角,作線段的垂直平分線軸于點.證明為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,直線.

(1)證明:不論取什么數(shù),直線與圓恒交于兩點;

(2)求直線被圓截得的線段的最短長度,并求此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知雙曲線.

1)過曲線的左頂點作的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;

2)設(shè)斜率為的直線交曲線、兩點,若與圓相切,求證:.

查看答案和解析>>

同步練習冊答案