已知函數(shù)f(x)=lnx-mx+m,m∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍.
(Ⅲ)在(Ⅱ)的條件下,任意的0<a<b,
【答案】分析:(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間,可先求出,再解出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,可利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性確定出函數(shù)的最大值,令最大值小于等于0,即可得到關(guān)于m的不等式,解出m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,任意的0<a<b,可先代入函數(shù)的解析式,得出再由0<a<b得出,代入即可證明出不等式.
解答:解:(Ⅰ)
當m≤0時,f′(x)>0恒成立,則函數(shù)f(x)在(0,+∞)上單調(diào)遞增;…2分
當m>0時,由
,則f(x)在上單調(diào)遞增,在上單調(diào)遞減.…4分
(Ⅱ)由(Ⅰ)得:當m≤0時顯然不成立;
當m>0時,只需m-lnm-1≤0即 ….6分
令g(x)=x-lnx-1,
,函數(shù)g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.∴g(x)min=g(1)=0.則若f(x)≤0在x∈(0,+∞)上恒成立,m=1.…8分
(Ⅲ)
由0<a<b得,
由(Ⅱ)得:,則,
則原不等式成立.…12分
點評:本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,研究函數(shù)的最值,及不等式的證明,考查了轉(zhuǎn)化的思想及推理判斷的能力,綜合性較強,解題的關(guān)鍵是準確理解題意,對問題進行正確轉(zhuǎn)化,熟練掌握導(dǎo)數(shù)運算性質(zhì)是解題的重點,正確轉(zhuǎn)化問題是解題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案