設(shè)集合A={1,2,a},B={x|-1<x<2a-1},A∩B=A,則實(shí)數(shù)a的取值范圍是(  )

A.(1,+∞) B.(,+∞)

C.(1,) D.(,2)∪(2,+∞)

 

D

【解析】∵A∩B=A,∴A⊆B,

,∴a>

由集合元素的互異性知a≠2,

∴a∈(,2)∪(2,+∞).選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:選擇題

從0,1,2,3,4,5這6個(gè)數(shù)字中任意取4個(gè)數(shù)字組成一個(gè)沒有重復(fù)數(shù)字的四位數(shù),這個(gè)數(shù)不能被3整除的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-2排列與組合(解析版) 題型:解答題

有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù):

(1)選其中5人排成一排;

(2)排成前后兩排,前排3人,后排4人;

(3)全體排成一排,甲不站在排頭也不站在排尾;

(4)全體排成一排,女生必須站在一起;

(5)全體排成一排,男生互不相鄰;

(6)全體排成一排,甲、乙兩人中間恰好有3人.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-1分類加法與分步乘法計(jì)數(shù)原理(解析版) 題型:解答題

有六名同學(xué)報(bào)名參加三個(gè)智力競(jìng)賽項(xiàng)目,在下列情況下各有多少種不同的報(bào)名方法?(不一定六名同學(xué)都能參加)

(1)每人恰好參加一項(xiàng),每項(xiàng)人數(shù)不限;

(2)每項(xiàng)限報(bào)一人,且每人至多參加一項(xiàng);

(3)每項(xiàng)限報(bào)一人,但每人參加的項(xiàng)目不限.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-1分類加法與分步乘法計(jì)數(shù)原理(解析版) 題型:填空題

某縣從10名大學(xué)畢業(yè)的選調(diào)生中選3個(gè)人擔(dān)任鎮(zhèn)長(zhǎng)助理,則甲、乙至少有1人入選,而丙沒有入選的不同選法的種數(shù)為(  )

A.85 B.56 C.49 D.28

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運(yùn)算(解析版) 題型:填空題

若集合A={x|x2+2x-8<0},B={x|5-m<x<2m-1}.若U=R,A∩( ∁UB)=A,則實(shí)數(shù)m的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運(yùn)算(解析版) 題型:選擇題

已知集合A={y|y=()x2+1,x∈R},則滿足A∩B=B的集合B可以是(  )

A.{0, } B.{x|-1≤x≤1}

C.{x|0<x<} D.{x|x>0}

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪考前特訓(xùn):創(chuàng)新問題專項(xiàng)訓(xùn)練1(解析版) 題型:填空題

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得ln y=φ(x)lnf(x),兩邊求導(dǎo)得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].運(yùn)用此方法可以探求得y=x的單調(diào)遞增區(qū)間是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):6-3二元一次不等式及簡(jiǎn)單的線性規(guī)劃(解析版) 題型:填空題

已知實(shí)數(shù)x,y滿足,若目標(biāo)函數(shù)z=ax+y(a≠0)取得最小值時(shí)的最優(yōu)解有無(wú)數(shù)個(gè),則實(shí)數(shù)a的值為________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案