已知ABCD是邊長(zhǎng)為2的正方形,E、F分別是BC、CD的中點(diǎn),則
AE
AF
=( 。
A.6B.5C.4D.3
由題意可得 AE=AF=
22+12
=
5
,tan∠EAN=tan∠FAD=
1
2

∴tan(∠EAB+∠FAD)=
tan∠EAN +tan∠FAD  
1-tan∠EAN •tan∠FAD  
=
1
2
+
1
2
1-
1
2
1
2
=
4
3
,
∴tan∠EAF=tan[90°-(∠EAB+∠FAD)]=cot(∠EAB+∠FAD)=
3
4

故cos∠EAF=
4
5

AE
AF
=AE•AF•cos∠EAF=
5
5
4
5
=4,
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,BF⊥平面ABCD,且FB=2DE=2.
(1)求點(diǎn)E到平面FBC的距離;
(2)求證:平面AEC⊥平面AFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知ABCD是邊長(zhǎng)為a的正方形,E,F(xiàn)分別是AB,AD的中點(diǎn),CG⊥面ABCD,CG=a.
(1)求證:BD∥EFG;
(2)求點(diǎn)B到面GEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知ABCD是邊長(zhǎng)為4的正方形,E、F分別是AB、AD的中點(diǎn),GC垂直于ABCD所在的平面,且GC=2.求點(diǎn)B到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門(mén)一模)已知ABCD是邊長(zhǎng)為2的正方形,E、F分別是BC、CD的中點(diǎn),則
AE
AF
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,BF⊥平面ABCD,且FB=2DE=2.
(1)求證:平面AEC⊥平面AFC;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案