設(shè)為三角形的三邊,求證:
見(jiàn)解析
解析試題分析:本題用直接法不易找到證明思路,用分析法,要證該不等式成立,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/d4/b/qbrdm.png" style="vertical-align:middle;" />,所以,只需證該不等式兩邊同乘以轉(zhuǎn)化成的等價(jià)不等式a(1+b)(1+c)+ b(1+a)(1+c)> c(1+a)(1+b)成立,用不等式性質(zhì)整理為a+2ab+b+abc>c成立,用不等式性質(zhì)及三角不等式很容易證明此不等式成立.
試題解析:要證明:
需證明: a(1+b)(1+c)+ b(1+a)(1+c)> c(1+a)(1+b) 5分
需證明:a(1+b+c+bc)+ b(1+a+c+ac)> c(1+a+b+ab) 需證明a+2ab+b+abc>c 10分
∵a,b,c是的三邊 ∴a>0,b>0,c>0且a+b>c,abc>0,2ab>0
∴a+2ab+b+abc>c
∴成立。 14分
考點(diǎn):分析法證明不等式;三角形兩邊之和大于第三邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)解不等式;
(2)已知關(guān)于x的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知關(guān)于的不等式的解集為.
(1)求實(shí)數(shù)a,b的值;
(2)解關(guān)于的不等式(c為常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知關(guān)于的不等式的解集為.
(1).求實(shí)數(shù)a,b的值;
(2).解關(guān)于的不等式(c為常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在某兩個(gè)正數(shù)x,y之間,若插入一個(gè)數(shù)a,使x,a,y成等差數(shù)列,若插入兩個(gè)數(shù)b,c,使x,b,c,y成等比數(shù)列,求證:(a+1)2≥(b+1)(c+1).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com