已知直線x-y+3=0與圓(x+2)2+(y-2)2=2相交A,B兩點,
(1)求線段AB的長度;  
(2)圓上有多少個點到直線AB的距離等于1.
考點:直線和圓的方程的應用
專題:計算題,直線與圓
分析:(1)利用圓心到直線的距離與半徑半弦長滿足的勾股定理,求出弦長即可.
(2)通過(1)求出圓心到直線的距離與半徑差的關系,即可判斷圓上有多少個點到直線AB的距離等于1.
解答: 解:(1)∵直線x-y+3=0與圓(x+2)2+(y-2)2=2相交A,B兩點,
圓的圓心(-2,2),半徑為
2
,
∴d=
|-2-2+3|
2
=
2
2

(
AB
2
)
2
=r2-d2=2-
1
2
=
3
2

AB=
6

則線段AB的長度為
6

(2)由(1)可知d=
2
2
,圓的半徑為
2
,
2
-
2
2
=
2
2
<1

∴圓上有2個點到直線的距離等于1.
點評:本題考查直線與圓的位置關系,考查點到直線的距離公式的應用,考查計算能力
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x+y-1≥0
x≤2
y≤3
,則z=y-x的最小值是(  )
A、1B、5C、-3D、-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(1-x)=f(1+x),且f(x)在[1,+∞)是增函數(shù),如果不等式f(1-m)<f(m)成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若ABCD為正方形,E是CD的中點,則
AB
=
a
,
AD
=
b
,則
AE
=(  )
A、
1
2
a
+
b
B、
1
2
b
+
a
C、
1
2
a
-
b
D、
1
2
b
-
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

舒城某運輸公司接受了向我縣偏遠地區(qū)每天送至少180t生活物資的任務.該公司有8輛載重6t的A型卡車與4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次;每輛卡車每天往返的成本費A型為320元,B型為504元.請為公司安排一下,應如何調(diào)配車輛,才能使公司所花的成本費最低?若只安排A型或B型卡車,所花的成本費分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x≥1
x+y≤3
x-2y≤0
,則 z=
(y+x)(y-x)
xy
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(m,1),
b
=(
1
2
,
3
2
)

(1)若向量
a
與向量
b
平行,求實數(shù)m的值;
(2)若向量
a
與向量
b
垂直,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+a|x-1|(a∈R),則對不同的實數(shù)a,函數(shù)f(x)的單調(diào)區(qū)間的個數(shù)有可能的是( 。
A、1個或2個
B、2個或3個
C、3個或4個
D、2個或4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(幾何證明選講選做題)如圖,已知點D在圓O直徑AB的延長線上,過D作圓O的切線,切點為C.若CD=
3
,BD=1
,則圓O的面積為
 

(坐標系與參數(shù)方程選做題)在直角坐標系xOy中,曲線l的參數(shù)方程為
x=t
y=3+t.
(t
為參數(shù));以原點O為極點,以x軸的正半軸為極軸建立極坐標系ρOθ,則曲線l的極坐標方程為
 

查看答案和解析>>

同步練習冊答案