11.已知α,β為銳角,且cosα=$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,則cosβ=( 。
A.-$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.-$\frac{56}{65}$

分析 α,β的范圍得出α-β的范圍,然后利用同角三角函數(shù)間的基本關(guān)系,由sin(α-β)和cosα的值,求出cos(α-β)和sinα的值,然后由β=α-(α-β),把所求的式子利用兩角差的余弦函數(shù)公式化簡后,將各自的值代入即可求出值.

解答 解:根據(jù)α,β∈(0,$\frac{π}{2}$),得到α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
由cosα=$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,
所以cos(α-β)=$\sqrt{1-si{n}^{2}(α-β)}$=$\frac{12}{13}$,sinα=$\frac{4}{5}$,
則cosβ=cos[α-(α-β)]=cos(α-β)cosα+sin(α-β)sinα=$\frac{12}{13}×\frac{3}{5}$+$\frac{5}{13}×\frac{4}{5}$=$\frac{56}{65}$.
故選:B.

點評 此題考查學(xué)生靈活運用同角三角函數(shù)間的基本關(guān)系及兩角和與差的正弦函數(shù)公式化簡求值,是一道中檔題.做題時注意角度的變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對于任意的x都有f(x)=f(x+2),當x∈[0,1]時,f(x)=x+1,則f($\frac{3}{2}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.多面體的三視圖如圖所示,則該多面體的表面積為$\frac{32}{3}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)f(x)對任意實數(shù)x,y均有f(x)•f(y)=f(x+y),且對于任意的x都有f(x)>0,且當x<0時f(x)>1.
(1)求證:f(x)為R上的減函數(shù);
(2)當f(4)=$\frac{1}{16}$時,若f(x2-3x+2)≤$\frac{1}{4}$,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC中,AB=6,AC=8,∠BAC=90°,△ABC所在平面α外一點P到點A、B、C的距離都是13,則P到平面α的距離為( 。
A.7B.9C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖中,哪個最有可能是函數(shù)$y=\frac{x}{2^x}$的圖象( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將二次函數(shù)y=x2的圖象向下平移1個單位,則平移后的二次函數(shù)的解析式為( 。
A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x∈N|x2+2x-3≤0},B={C|C⊆A},則集合B中元素的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋物線C的頂點在坐標原點,焦點在坐標軸上,且C過點(-2,3),則C的方程是y2=-$\frac{9}{2}$x或x2=$\frac{4}{3}$y.

查看答案和解析>>

同步練習(xí)冊答案