【題目】已知正數(shù)a,b,c滿足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,則 的取值范圍是 .
【答案】[e,7]
【解析】解:∵4c﹣a≥b>0
∴ > ,
∵5c﹣3a≤4c﹣a,
∴ ≤2.
從而 ≤2×4﹣1=7,特別當(dāng) =7時,第二個不等式成立.等號成立當(dāng)且僅當(dāng)a:b:c=1:7:2.
又clnb≥a+clnc,
∴0<a≤cln ,
從而 ≥ ,設(shè)函數(shù)f(x)= (x>1),
∵f′(x)= ,當(dāng)0<x<e時,f′(x)<0,當(dāng)x>e時,f′(x)>0,當(dāng)x=e時,f′(x)=0,
∴當(dāng)x=e時,f(x)取到極小值,也是最小值.
∴f(x)min=f(e)= =e.
等號當(dāng)且僅當(dāng) =e, =e成立.代入第一個不等式知:2≤ =e≤3,不等式成立,從而e可以取得.等號成立當(dāng)且僅當(dāng)a:b:c=1:e:1.
從而 的取值范圍是[e,7]雙閉區(qū)間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,,動點滿足,記M的軌跡為曲線C.
(1)求曲線C的方程;
(2)過坐標(biāo)原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結(jié)QH并延長交C于點R.
(i)設(shè)O到直線QH的距離為d.求d的取值范圍;
(ii)求面積的最大值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月14日,“共享單車”終于來到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準(zhǔn)備對該項目進(jìn)行考核,考核的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于,否則該項目需進(jìn)行整改,該部門為了了解市民對該項目的滿意程度,隨機(jī)訪問了使用共享單車的名市民,并根據(jù)這名市民對該項目滿意程度的評分(滿分分),繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于分的市民中隨機(jī)抽取人進(jìn)行座談,求這人評分恰好都在的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線與直線垂直.
(1)求函數(shù)的極值;
(2)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),設(shè),
(1)若f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立,求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程,若變量增加一個單位時,則平均增加5個單位;
③線性回歸方程所在直線必過;
④曲線上的點與該點的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤在一個列聯(lián)表中,由計算得,則其兩個變量之間有關(guān)系的可能性是.
其中錯誤的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:y=m和l2:y= (m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當(dāng)m變化時, 的最小值為( )
A.16
B.8
C.8
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.
(1)若學(xué)生宿舍建筑為層樓時,該樓房綜合費用為萬元,綜合費用是建筑費用與購地費用之和),寫出的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時平均綜合費用為每平方米萬元
【解析】
由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數(shù)列前項和求建筑層樓時的綜合費用;
設(shè)樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時,每平方米建筑費用為萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高萬元,
可得建筑第1層樓房每平方米建筑費用為:萬元.
建筑第1層樓房建筑費用為:萬元.
樓房每升高一層,整層樓建筑費用提高:萬元.
建筑第x層樓時,該樓房綜合費用為:.
;
設(shè)該樓房每平方米的平均綜合費用為,
則:,
當(dāng)且僅當(dāng),即時,上式等號成立.
學(xué)校應(yīng)把樓層建成10層,此時平均綜合費用為每平方米萬元.
【點睛】
本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com