函數(shù)f(x)=1+logax(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-2=0上,則m2+n2的最小值為
 
考點:對數(shù)的運算性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意易知A(1,1),從而由幾何意義求解.
解答: 解:易知函數(shù)f(x)=1+logax(a>0,a≠1)的圖象恒過定點A(1,1);
故m+n-2=0;
而m2+n2可看成點(m,n)到原點的距離平方;
而點(m,n)到原點的距離的最小值為
d
|0+0-2|
1+1
=
2
;
故m2+n2的最小值為2;
故答案為:2.
點評:本題考查了函數(shù)的性質(zhì)的應(yīng)用及最值的幾何意義應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的首項為1,且滿足an≥1,a2n+1+a2n+1=2(an+1+an)+2an+1an(n∈N+
(1)求a2、a3的值;
(2)若{an}為單調(diào)遞增數(shù)列,求{an}的通項;
(3)設(shè)bn=(-1)nan,Sn為數(shù)列{bn}的前n項和,求S2n的最小值,并求S8的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log 
3
27+lg4+lg25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直線3x+4y+5=0上的動點,點Q為圓(x-2)2+(y-2)2=4上的動點,則|PQ|的最小值為( 。
A、
9
5
B、2
C、
4
5
D、
13
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

表中顯示的是某商品從4月份到10月份的價格變化統(tǒng)計如下:
 x(月) 4 5 6 7 8 910 
 y(元) 15 16.9 19 20.9 23.1 25.1 27
在一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)這四個函數(shù)模型中,請確認(rèn)最能代表上述變化的函數(shù),并預(yù)測該商品11月份的價格為
 
元(精確到整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,等腰直角△ABC的直角頂點C(0,-1),斜邊AB所在的直線方程為x+2y-8=0.
(1)求△ABC的面積;
(2)求斜邊AB中點D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=k(x-1)與拋物線y2=4x交于點A(x1,y1),B(x2,y2),且x1+x2=4,則|AB|等于( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,-2,0)和向量
a
=(-3,4,12),
AB
a
且|
AB
|=2|
a
|,則B點坐標(biāo)為(  )
A、(-5,6,24)或(7,-10,-24)
B、(5,-6,24,)或(7,-10,-24)
C、(5,6,24)或(7,-10,-24)
D、(-5,6,24)或(7,10,-24)

查看答案和解析>>

同步練習(xí)冊答案