精英家教網 > 高中數學 > 題目詳情

【題目】旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為.旅行團中的每個人的飛機票按以下方式與旅行社結算:若旅行團的人數不超過人時,飛機票每張元;若旅行團的人數多于人時,則予以優(yōu)惠,每多人,每個人的機票費減少元,但旅行團的人數最多不超過.設旅行團的人數為人,飛機票價格元,旅行社的利潤為.

1)寫出每張飛機票價格元與旅行團人數之間的函數關系式;

2)當旅行團人數為多少時,旅行社可獲得最大利潤?求出最大利潤.

【答案】1;(2)當旅游團人數為時,旅行社可獲得最大利潤為.

【解析】

1)討論兩種情況,分別計算得到答案.

2,分別計算最值得到答案.

1)依題意得,當時,.

時,;

2)設利潤為,則.

時,,

時,,其對稱軸為

因為,所以當時,.

故當旅游團人數為時,旅行社可獲得最大利潤為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列命題錯誤的是( )

A.兩個隨機變量的線性相關性越強,相關系數的絕對值越接近于1

B.,且,則

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬帶越狹窄,其模型擬合的精度越高

D.已知變量xy滿足關系,變量yz正相關,則xz負相關

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,E、F、G、H分別是的中點.

1)證明:平面

2)證明:平面平面.

3)求直線AE與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數學、外語三科為必考科目,滿分各150分,另外考生還要依據想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學生進行調查.

(1)已知抽取的名學生中含女生45人,求的值及抽取到的男生人數;

(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據調查結果得到的列聯表. 請將列聯表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;

(3)在抽取的選擇“地理”的學生中按分層抽樣再抽取6名,再從這6名學生中抽取2人了解學生對“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=ax2+2x+c,若不等式fx<0的解集是{x|-4<x<2}.

1)求fx)的解析式;

2)判斷fx)在(0,+∞)上的單調性,并用定義證明;

3)若函數fx)在區(qū)間[m,m+2]上的最小值為-5,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數時有最大值和最小值,設.

1)求實數的值;

2)若不等式上恒成立,求實數的取值范圍;

3)若關于的方程有三個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.

(1)求橢圓C的方程;

(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱側棱和底面垂直的棱柱中,平面側面,,線段AC、上分別有一點E、F且滿足,

求證:;

求點E到直線的距離;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數的取值范圍;

(2)若,為真命題,“”為假命題,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案