【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

【答案】(1)(2)直線恒過(guò)一定點(diǎn).

【解析】試題分析:(1)利用垂直平分線的性質(zhì)可得,再結(jié)合橢圓的定義,可得點(diǎn)的軌跡方程;(2)設(shè)直線的方程為與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系可得,利用兩直線方程,及 的交點(diǎn)的橫坐標(biāo)為,可得,結(jié)合前面兩式,化簡(jiǎn)可得.則當(dāng)時(shí),恒成立,直線過(guò)定點(diǎn).試題解析:(Ⅰ)依題意有, ,

所以點(diǎn)的軌跡方程為:

(Ⅱ)依題意設(shè)直線的方程為:

代入橢圓方程得:

且: ①,

∵直線 ,直線

由題知, 的交點(diǎn)的橫坐標(biāo)為4,得:

,即

即: ,整理得:

將①②代入③得:

化簡(jiǎn)可得:

當(dāng)變化時(shí),上式恒成立,故可得:

所以直線恒過(guò)一定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),( )為定義域上的增函數(shù), 是函數(shù)的導(dǎo)數(shù),且的最小值小于等于0.

(1)求的值;

(2)設(shè)函數(shù),且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x﹣ ,且f(2)=
(1)求實(shí)數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2x 的零點(diǎn)個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于300的為“長(zhǎng)纖維”,其余為“短纖維”)

纖維長(zhǎng)度

甲地(根數(shù))

3

4

4

5

4

乙地(根數(shù))

1

1

2

10

6

(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.

甲地

乙地

總計(jì)

長(zhǎng)纖維

短纖維

總計(jì)

附:(1);

(2)臨界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)現(xiàn)從上述40根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓C1 和圓C2:x2+y2=b2 , 已知圓C2將橢圓C1的長(zhǎng)軸三等分,且圓C2的面積為π.橢圓C1的下頂點(diǎn)為E,過(guò)坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點(diǎn)A,B,直線EA,EB與橢圓C1的另一個(gè)交點(diǎn)分別是點(diǎn)P,M.
(I)求橢圓C1的方程;
(Ⅱ)求△EPM面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)沙市物價(jià)監(jiān)督部門為調(diào)研某公司新開(kāi)發(fā)上市的一種產(chǎn)品銷售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)

10

20

30

40

50

60

年銷量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù):

(1)根據(jù)散點(diǎn)圖判斷, 哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說(shuō)明理由)?

(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價(jià)為多少元/ 時(shí),年銷售額的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

同步練習(xí)冊(cè)答案