【題目】已知函數(shù).

(Ⅰ)求的最小正周期;

(Ⅱ)若在區(qū)間上的最大值與最小值的和為2,求的值.

【答案】(1)(2)

【解析】試題分析:根據(jù)二倍角公式及輔助角公式可將函數(shù)化為即可求得周期 ;(根據(jù)三角函數(shù)的有界性不,求出函數(shù)的最值,列方程求解即可.

試題解析:(Ⅰ)

(Ⅱ)因?yàn)?/span>,所以

當(dāng),即時(shí), 單調(diào)遞增

當(dāng),即時(shí), 單調(diào)遞減

所以

又因?yàn)?/span>,

所以

,因此

【方法點(diǎn)晴】本題主要考查三角函數(shù)的單調(diào)性、三角函數(shù)的周期性及三角函數(shù)的有界性,屬于難題.三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)?疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinx+cosx=1,則(sinx)2018+(cosx)2018=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)設(shè),若對任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)滿足條件.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)直線與圓 相切,與曲線相較于, 兩點(diǎn),若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sin2x+2cosx( )的最大值與最小值分別為(
A.最大值 ,最小值為﹣
B.最大值為 ,最小值為﹣2
C.最大值為2,最小值為﹣
D.最大值為2,最小值為﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球2個(gè).從袋子中不放回地隨機(jī)抽取小球兩個(gè),每次抽取一個(gè)球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.

(1)記事件表示“”,求事件的概率;

(2)在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x1是函數(shù)f(x)ax3x2(a1)x5的一個(gè)極值點(diǎn).

(1)求函數(shù)f(x)的解析式;

(2)若曲線yf(x)與直線y2xm有三個(gè)交點(diǎn)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.

(1)求線段AB的中點(diǎn)M的軌跡C的方程;

(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案