設f(x)是定義在[1+a,2]上偶函數(shù),則f(x)=ax2+bx-2在區(qū)間[0,2]上是( 。
A、增函數(shù)B、先增后減函數(shù)C、減函數(shù)D、與a,b有關,不能確定
分析:根據偶函數(shù)定義域的特點解出a,然后根據二次函數(shù)的圖象和性質進行判斷即可.
解答:解:∵f(x)是定義在[1+a,2]上偶函數(shù),
∴定義域關于原點對稱,
即1+a+2=0,
∴a=-3,
則f(x)=ax2+bx-2=-3x2+bx-2,
∵f(-x)=-3x2-bx-2=-3x2+bx-2,
∴-b=b,解得b=0,
∴f(x)=-3x2-2,
即拋物線開口向下,對稱軸為x=0,
則函數(shù)在區(qū)間[0,2]上是減函數(shù).
故選:C.
點評:本題主要考查函數(shù)奇偶性的應用和判斷,利用函數(shù)奇偶性的定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù),且y=f(x)的圖象關于直線x=
12
對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

例2.設f(x)是定義在[-3,
2
]上的函數(shù),求下列函數(shù)的定義域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在[-1,1]上的奇函數(shù),g(x)的圖象與f(x)的圖象關于直線x=1對稱,而當x∈[2,3]時,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2013)+f(2014)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江一模)設f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x-2)=f(x+2)且當x∈[-2,0]時,f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是
34
,2)
34
,2)

查看答案和解析>>

同步練習冊答案