【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:,已知過(guò)點(diǎn)的直線的參數(shù)方程為: (為參數(shù)),直線與曲線分別交于兩點(diǎn).

(1)寫(xiě)出曲線和直線的普通方程;

(2)若,,成等比數(shù)列,求的值.

【答案】(1) , x-y-2=0.

(2)1.

【解析】

(1)將曲線C的極坐標(biāo)方程兩邊乘以得到然后將代入可得直角坐標(biāo)方程;消去直線參數(shù)方程中的參數(shù)后可得普通方程.(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程得到關(guān)于的一元二次方程,然后結(jié)合題意及參數(shù)的幾何意義求解.

(1)∵曲線的極坐標(biāo)方程為,

代入上式,

∴曲線的直角坐標(biāo)方程為:

消去參數(shù)方程 (為參數(shù))中的參數(shù),可得,

∴直線的普通方程為.

(2)將 (為參數(shù))代入整理得.

設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,

,,

由題意得

,

,

,

,

解得(舍去).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)在平面直角坐標(biāo)系中,橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng)

(1)求橢圓的方程;

(2)記橢圓的左右頂點(diǎn),分別過(guò)軸的垂線交直線于點(diǎn), 橢圓上位于軸上方的動(dòng)點(diǎn),直線,分別交直線于點(diǎn),

(i)當(dāng)直線的斜率為2時(shí),求的面積;

(ii)求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x2-4x+3|.

(1)作出函數(shù)f(x)的圖象;

(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其單調(diào)性;

(3)求集合M={m|使方程f(x)=m有四個(gè)不相等的實(shí)根}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

⑴若函數(shù)的圖象經(jīng)過(guò)點(diǎn),求實(shí)數(shù)的值.

⑵當(dāng)時(shí),函數(shù)的最小值為1,求當(dāng)時(shí),函數(shù)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn).用,分別表示烏龜和兔子所行的路程,為時(shí)間,則與故事情節(jié)相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) fx)是定義在 R上的偶函數(shù),當(dāng) x≥0 時(shí),fx)=x2+ax+b 的部分圖象如圖所示:

1)求 fx)的解析式;

2)在網(wǎng)格上將 fx)的圖象補(bǔ)充完整,并根據(jù) fx)圖象寫(xiě)出不等式 fx≥1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),對(duì)任意滿足,且有最小值為

1)求的解析式;

2)求函數(shù)在區(qū)間[0,1]上的最小值,其中

3)在區(qū)間[1,3]上,的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過(guò)F的直線l交C于A,B兩點(diǎn),交x軸于點(diǎn)D,B到x軸的距離比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若SBOF=SAOD , 求l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案