已知點(diǎn),的坐標(biāo)分別是,.直線,相交于點(diǎn),且它們的斜率之積為.
(1)求點(diǎn)的軌跡的方程;
(2)若過點(diǎn)的兩直線和與軌跡都只有一個(gè)交點(diǎn),且,求的值;
(3)在軸上是否存在兩個(gè)定點(diǎn),,使得點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離的比恒為,若存在,求出定點(diǎn),;若不存在,請(qǐng)說明理由.
(1)軌跡的方程為
(2)
(3)存在定點(diǎn),或,
解析試題分析:解: (1)設(shè)點(diǎn)的坐標(biāo)為
由題可知,即,
化簡得 ,
所以點(diǎn)的軌跡的方程為 4分
(2)分四種情況討論
情況一:當(dāng)直線和都與相切時(shí),直線和與軌跡都只有一個(gè)交點(diǎn)。
設(shè)直線的方程為,即
由可知直線的方程為,即
因?yàn)橹本和都與相切,所以 解得。 6分
情況二:當(dāng)直線過點(diǎn),直線過點(diǎn)時(shí),直線和與軌跡都只有一個(gè)交點(diǎn)。
此時(shí)直線的斜率,直線的斜率
由知,解得。 7分
情況三:當(dāng)直線過點(diǎn),直線與相切時(shí),直線和與軌跡都只有一個(gè)交點(diǎn)。
直線的斜率,由知直線的斜率
故直線的方程為,即
因?yàn)橹本與相切,所以 解得。
情況四:當(dāng)直線過點(diǎn),直線與相切時(shí),直線和與軌跡都只有一個(gè)交點(diǎn)。
直線的斜率,由
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線:,(不同時(shí)為0),:,
(1)若且,求實(shí)數(shù)的值;
(2)當(dāng)且時(shí),求直線與之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理)已知⊙:和定點(diǎn),由⊙外一點(diǎn)向⊙引切線,切點(diǎn)為,且滿足.
(1)求實(shí)數(shù)間滿足的等量關(guān)系;
(2)求線段長的最小值;
(3)若以為圓心所作的⊙與⊙有公共點(diǎn),試求半徑取最小值時(shí)的⊙方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線過點(diǎn)P(-2,1),
(1)若直線與直線平行,求直線的方程;
(2)若點(diǎn)A(-1,-2)到直線的距離為1,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三角形ABC的頂點(diǎn)坐標(biāo)分別為A,B,C;
(1)求直線AB方程的一般式;
(2)證明△ABC為直角三角形;
(3)求△ABC外接圓方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,邊上的高所在的直線的方程為,的平分線所在直線的方程為,若點(diǎn)的坐標(biāo)為。
(1)求點(diǎn)的坐標(biāo);
(2)求直線BC的方程;
(3)求點(diǎn)C的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過A,B兩點(diǎn),且A(2,1), =(4,2).
(1)求直線l的方程;
(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點(diǎn),求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分)已知直線:和點(diǎn)(1,2),設(shè)過點(diǎn)與垂直的直線為.
(1)求直線的方程;
(2)求直線與兩坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題10分)求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點(diǎn)M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com