觀察下列不等式:1+
1
22
3
2
1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…由以上不等式推測到一個一般的結(jié)論:對于n∈N*,1+
1
22
+
1
32
+…+
1
n2
2n-1
n
2n-1
n
分析:由已知中的三個式子,我們分析每一個不等式右邊的變化趨勢,可以歸納出其通項為
2n-1
n
,由此即可得到結(jié)論.
解答:解:由已知中的不等式,1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4

我們可以得出不等式右邊分式的分子是正奇數(shù)3,5,7,…,分母是正整數(shù)2,3,4,…,從而推斷:
對于n∈N*,1+
1
22
+
1
32
+…+
1
n2
2n-1
n

故答案為:
2n-1
n
點評:本題考查的知識點是歸納推理,歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

觀察下列不等式:1>
1
2
,1+
1
2
+
1
3
>1,1+
1
2
+
1
3
+…+
1
7
3
2
,1+
1
2
+
1
3
+…+
1
15
>2,1+
1
2
+
1
3
+…+
1
31
5
2
,…,由此猜測第n個不等式為
 
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)觀察下列不等式:
1+
1
22
3
2
,
1+
1
22
+
1
32
5
3
,
1+
1
22
+
1
32
+
1
42
7
4


照此規(guī)律,第五個不等式為
1+
1 
22
+
1 
32
+
1 
42
+
1 
52
+
1 
62
11
6 
1+
1 
22
+
1 
32
+
1 
42
+
1 
52
+
1 
62
11
6 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•渭南二模)觀察下列不等式:1+
1
2
+
1
3
>1
,1+
1
2
+
1
3
+…+
1
7
3
2
,1+
1
2
+
1
3
+…+
1
15
>2
1+
1
2
+
1
3
+…+
1
31
5
2
,…,照此規(guī)律,第6個不等式為
1+
1
2
+
1
3
+…+
1
127
>3
1+
1
2
+
1
3
+…+
1
127
>3

查看答案和解析>>

科目:高中數(shù)學 來源:2008年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學二模試卷(解析版) 題型:填空題

觀察下列不等式:1>,1++>1,1+++…+,1+++…+>2,1+++…+,…,由此猜測第n個不等式為     (n∈N*).

查看答案和解析>>

同步練習冊答案