設(shè)命題p:實(shí)數(shù)x滿足x2+ax-2a2<0,命題q:實(shí)數(shù)x滿足x2+2x-8<0,且¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:假設(shè)命題p中的a的取值范圍為A,假設(shè)命題q中的a的取值范圍為B.命題p:實(shí)數(shù)x滿足x2+ax-2a2<0,對(duì)a分類討論可得當(dāng)a>0時(shí),-2a<x<a;a=0時(shí),A=∅;a<0時(shí),A=(a,-2a).命題q:實(shí)數(shù)x滿足x2+2x-8<0,解得B=(-4,2).由¬p是¬q的必要不充分條件等價(jià)于q是p的必要不充分條件,等價(jià)于集合A是B的真子集.解出即可.
解答: 解:假設(shè)命題p中的a的取值范圍為A,假設(shè)命題q中的a的取值范圍為B.
命題p:實(shí)數(shù)x滿足x2+ax-2a2<0,當(dāng)a>0時(shí),A=(-2a,a);a=0時(shí),A=∅;a<0時(shí),A=(a,-2a).
命題q:實(shí)數(shù)x滿足x2+2x-8<0,解得B=(-4,2).
由¬p是¬q的必要不充分條件等價(jià)于q是p的必要不充分條件,等價(jià)于集合A是B的真子集.
當(dāng)a>0時(shí),
-2a≥-4
a≤2
,解得0<a≤2.
當(dāng)a=0時(shí),成立;
當(dāng)a<0時(shí),
a≥-4
-2a≤2
,解得-1≤a<0.
綜上可得:-1≤a<2.
點(diǎn)評(píng):本題考查了一元二次不等式的解法、簡(jiǎn)易邏輯的判定、分類討論的思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),求數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+2x+1,則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=
1+an
1-an
 (n∈N*)
,則a2015的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y2=2px(p>0)有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),兩直角邊OA與OB的長(zhǎng)分別為1和8,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈(0,1)時(shí)f(x)=2x,則f(3.5)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖算法框圖,若輸入a=3,b=
1
2
,則輸出的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+ax+3,當(dāng)x∈[1,+∞)時(shí),f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x>y;則-x<-y;命題q:若x<y;則x2<y2;在命題 ①p∧q,②p∨q,③p∧(¬q),④(¬p)∨q中,真命題是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

同步練習(xí)冊(cè)答案