精英家教網 > 高中數學 > 題目詳情
函數y=
x
(x≥0)的圖象上的點到A(
5
4
,
3
)的距離與到直線x=-
5
4
的距離之和的最小值為(  )
A.
3
B.3C.2D.
5
4
∵y=
x
(x≥0)
∴y2=x(x≥0)拋物線的焦點為F,則F(
1
4
,0),
設點P是函數y=
x
(x≥0)的圖象上的點
依題設P在拋物線準線的投影為P',
依拋物線的定義知P到該拋物線準線的距離為|PP'|=|PF|,
∴點P到A(
5
4
3
)的距離與到直線x=-
5
4
的距離之和為|PA|+|PP'|+1=|PA|+|PF|+1
∵|PA|+|PF|+1≥|AF|+1=2+1=3.
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數y=f(x)(x∈R),給出下列命題:
(1)在同一直角坐標系中,函數y=f(1-x)與y=f(x-1)的圖象關于直線x=0對稱;
(2)若f(1-x)=f(x-1),則函數y=f(x)的圖象關于直線x=1對稱;
(3)若f(1+x)=f(x-1),則函數y=f(x)是周期函數;
(4)若f(1-x)=-f(x-1),則函數y=f(x)的圖象關于點(0,0)對稱.
其中所有正確命題的序號是
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數y=f(x),y=g(x),規(guī)定:
函數h(x)=
f(x)•g(x),當x∈M且x∈N
f(x),當x∈M且x∉N
g(x),當x∉M且x∈N

(1)若函數f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數,且α∈[0,2π],請問,是否存在一個定義域為R的函數y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

對于函數y=f(x)(x∈R),給出下列命題:
(1)在同一直角坐標系中,函數y=f(1-x)與y=f(x-1)的圖象關于直線x=0對稱;
(2)若f(1-x)=f(x-1),則函數y=f(x)的圖象關于直線x=1對稱;
(3)若f(1+x)=f(x-1),則函數y=f(x)是周期函數;
(4)若f(1-x)=-f(x-1),則函數y=f(x)的圖象關于點(0,0)對稱.
其中所有正確命題的序號是______.

查看答案和解析>>

科目:高中數學 來源:黃埔區(qū)一模 題型:解答題

對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

同步練習冊答案