【題目】已知橢圓的離心率為,且橢圓上的一點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)已知直線與橢圓相交于兩點(diǎn).
①若線段中點(diǎn)的橫坐標(biāo)為,求的值;
②在軸上是否存在點(diǎn),使為定值?若是,求點(diǎn)的坐標(biāo);若不是,請說明理由.
【答案】(1);(2)①,②.
【解析】分析:(1)先根據(jù)已知得到a,c的兩個方程,解方程即得橢圓的方程.(2) ①,先聯(lián)立直線與橢圓的方程得到韋達(dá)定理=2×,即得k的值. ②假設(shè)存在定點(diǎn)使得為定值,設(shè)點(diǎn),先求,再分析得到,即得m的值.
詳解:(1)由題意得:① ,②,
由①②解得:,∴,
∴橢圓的方程為.
(2)由消去得,
,
設(shè),則,
①∵線段的中點(diǎn)的橫坐標(biāo)為,所以,即,
所以;
②假設(shè)存在定點(diǎn)使得為定值,設(shè)點(diǎn),
所以
為定值,
即,故,
解得:,所以當(dāng)時為定值,定值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備從高一年級的兩個男生和三個女生中選擇2個人去參加一項(xiàng)比賽.
(1)若從這5個學(xué)生中任選2個人,求這2個人都是女生的概率;
(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱A1B1C1D1﹣ABCD中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件 時,有A1C⊥B1D1 . (注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是線段A1A2的中點(diǎn),A4是線段A2A3的中點(diǎn),……,An是線段An-2An-1的中點(diǎn),……
(1)寫出xn與xn-1,xn-2之間的關(guān)系式(n≥3);
(2)設(shè)an=xn+1-xn,計(jì)算a1,a2,a3,由此推測數(shù)列{an}的通項(xiàng)公式,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個零點(diǎn)x1 , x2 , 則x1x2的取值范圍是( )
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)通過對某企業(yè)今年的生產(chǎn)經(jīng)營情況的調(diào)查,得到每月利潤(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:
1 | 4 | 7 | 12 | |
229 | 244 | 241 | 196 |
(1)根據(jù)如表數(shù)據(jù),請從下列三個函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述與的變化關(guān)系,并說明理由,,,;
(2)利用(1)中選擇的函數(shù),估計(jì)月利潤最大的是第幾個月,并求出該月的利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).
(1)若,證明:函數(shù)必有局部對稱點(diǎn);
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.
(1)求的通項(xiàng)公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)證明:數(shù)列中的任意三項(xiàng)不為等差數(shù)列;
(Ⅲ)證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com