【題目】已知p:|x﹣a|<3(a為常數(shù));q:代數(shù)式 有意義.
(1)若a=1,求使“p∧q”為真命題的實數(shù)x的取值范圍;
(2)若p是q成立的充分不必要條件,求實數(shù)a的取值范圍.

【答案】
(1)解:p:|x﹣a|<3等價于:﹣3<x﹣a<3即a﹣3<x<a+3;

q:代數(shù)式 有意義等價于:

,即﹣1≤x<6

a=1時,p即為﹣2<x<4

若“p∧q”為真命題,則 ,得:﹣1≤x<4

故a=1時,使“p∧q”為真命題的實數(shù)x的取值范圍是[﹣1,4)


(2)解:記集合A={x|a﹣3<x<a+3},B={x|﹣1≤x<6}

若p是q成立的充分不必要條件,則AB,

因此: ,

∴2≤a≤3,故實數(shù)a的取值范圍是[2,3].


【解析】(1)若a=1,分別求出p,q成立的等價條件,利用p∧q為真,求實數(shù)x的取值范圍;(2)利用p是q的充分不必要條件,建立不等式關(guān)系即可求實數(shù)a的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用復(fù)合命題的真假的相關(guān)知識可以得到問題的答案,需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當p與q同為假時為假,其他情況時為真.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地方政府欲將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場,已知AD∥BC,AD⊥AB,AD=2BC=2 百米,AB=3百米,廣場入口P在AB上,且AP=2BP,根據(jù)規(guī)劃,過點P鋪設(shè)兩條互相垂直的筆直小路PM、PN(小路寬度不計),點M、N分別在邊AD、BC上(包含端點),△PAM區(qū)域擬建為跳舞健身廣場,△PBN區(qū)域擬建為兒童樂園,其他區(qū)域鋪設(shè)綠化草坪,設(shè)∠APM=θ.
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PN、PN進行不同風(fēng)格的美化,小路PM的美化費用為每百米1萬元,小路PN的美化費用為每百米2萬元,試確定點M,N的位置,使得小路PM,PN的總美化費用最低,并求出最低費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)的圖象與直線y=kx有兩個不同的交點,則實數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標準差是3.3
C.K2是用來判斷兩個分類變量是否相關(guān)的隨機變量,當K2的值很小時可以推定兩類變量不相關(guān)
D.設(shè)有一個回歸直線方程為 =2﹣1.5x,則變量x每增加一個單位, 平均減少1.5個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 直徑, 所在的平面, 是圓周上不同于 的動點.

(1)證明:平面 平面 ;
(2)若 ,且當二面角 的正切值為 時,求直線 與平面 所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一邊長為6的正方形鐵片,在鐵片的四角各截去一個邊長為x的小正方形后,沿圖中虛線部分折起,做成一個無蓋方盒.
(1)試用x表示方盒的容積V(x),并寫出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x2+x>0},集合B= ,則(UA)∪B=(
A.[0,2)
B.[﹣1,0]
C.[﹣1,2)
D.(﹣∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均不相等的等差數(shù)列{an}的前四項和S4=14,且a1 , a3 , a7成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項和,若Tn≤λan+1n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDA1B1C1D1為正方體,下面結(jié)論錯誤的是 (  )

A. BD∥平面CB1D1 B. AC1BD

C. AC1⊥平面CB1D1 D. 異面直線ADCB1所成的角為60°

查看答案和解析>>

同步練習(xí)冊答案