(本小題滿分16分)
已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實(shí)數(shù)x1,總存在唯一的小于2的實(shí)數(shù)x2,使得g (x1) = g (x2) 成立,試確定實(shí)數(shù)m的取值范圍.
(本小題滿分16分)
解:(1)f (x)為單調(diào)減函數(shù). ………………………1分
證明:由0<m≤2,x≥2,可得
==.
由 ,………………4分
且0<m≤2,x≥2,所以.從而函數(shù)f(x)為單調(diào)減函數(shù). ……………5分
(亦可先分別用定義法或?qū)?shù)法論證函數(shù)在上單調(diào)遞減,再得函數(shù)f(x)為單調(diào)減函數(shù).)
(2)①若m≤0,由x1≥2,,
x2<2,,
所以g (x1) = g (x2)不成立. ………………………7分
②若m>0,由x>2時(shí),,
所以g(x)在單調(diào)遞減.從而,即.
……………………9分
(a)若m≥2,由于x<2時(shí),,
所以g(x)在(-∞,2)上單調(diào)遞增,從而,即.
要使g (x1) = g (x2)成立,只需,即成立即可.
由于函數(shù)在的單調(diào)遞增,且h(4)=0,
所以2≤m<4. ………………………12分
(b)若0<m<2,由于x<2時(shí),
所以g(x)在上單調(diào)遞增,在上單調(diào)遞減.
從而,即.
要使g (x1) = g (x2)成立,只需成立,即成立即可.
由0<m<2,得 .
故當(dāng)0<m<2時(shí),恒成立. ……………………15分
綜上所述,m為區(qū)間(0,4)上任意實(shí)數(shù). ………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。
(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;
(2)設(shè),求點(diǎn)T的坐標(biāo);
(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測試數(shù)學(xué) 題型:解答題
(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時(shí),恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對任意恒成立”與“在內(nèi)必有解”同時(shí)成立時(shí),求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;
(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)
(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)設(shè)命題:方程無實(shí)數(shù)根; 命題:函數(shù)
的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測數(shù)學(xué)卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com