【題目】下列說法中錯誤的是(

A. 給定兩個命題,若為真命題,則都是假命題;

B. 命題“若,則”的逆否命題是“若,則”;

C. 若命題,則,使得;

D. 函數(shù)處的導數(shù)存在,若的極值點,則 的充要條件.

【答案】D

【解析】

結(jié)合題意逐一考查所給的選項是否正確即可.

逐一考查所給的選項:

A. 給定兩個命題,若為真命題,由真值表可知均為真命題,則都是假命題,題中的命題正確;

B. 同時否定條件和結(jié)論,然后交換條件和結(jié)論的位置即可得到一個命題的逆否命題,據(jù)此可知命題,則的逆否命題是,則”,題中的命題正確;

C. 全稱命題的否定為特稱命題,若命題,則,使得,題中的命題正確;

D. 函數(shù)的導函數(shù)為,在處的導函數(shù),但是函數(shù)在坐標原點處沒有極值,故函數(shù)處的導數(shù)存在,若的極值點,則不是 的充要條件,題中的命題錯誤.

本題選擇D選項.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點之和為(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓: 的左右焦點分別 ,過作垂直于軸的直線交橢圓于兩點,滿足.

(1)求橢圓的離心率.

(2)是橢圓短軸的兩個端點,設(shè)點是橢圓上一點(異于橢圓的頂點),直線分別與軸相交于兩點,為坐標原點,若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=e|lnx|(e為自然對數(shù)的底數(shù)).若x1≠x2且f(x1)=f(x2),則下列結(jié)論一定不成立的是(
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)).若直線分別與圓和圓交于不同于原點的點

(1)以直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,求圓和圓的極坐標方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對稱圖形

C. f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減

D. fx)的極值點,則()=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,⊙O是以AB為直徑的圓,點C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點E.若EB=6,EC=6 ,則BC的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)為曲線上兩點,的橫坐標之和為

(1)求直線的斜率;

(2)為曲線上一點,處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

同步練習冊答案