解:(Ⅰ)g(x)=a(x-1)
2+1+b-a(a>0),
當(dāng)a>0時(shí),g(x)在區(qū)間[2,3]上為增函數(shù),
故
,即
,解得
------
(Ⅱ)f(x)-kx≥0化為:x+
-2≥kx,
∵x>0,
∴1+
-
≥k,
∵1+
-
=
≥0(當(dāng)x=1時(shí)取等號(hào))
∴k≤0.----
(Ⅲ)方程f(|2
x-1|)+k(
-3)=0可化為:
|2
x-1|
2-(2+3k)|2
x-1|+(1+2k)=0,|2
x-1|≠0,
令|2
x-1|=t,則方程化為
t
2-(2+3k)t+(1+2k)=0(t≠0),
∵方程|2
x-1|+
-(2+3k)=0有三個(gè)不同的實(shí)數(shù)解,
∴由t=|2
x-1|的圖象知,
t
2-(2+3k)t+(1+2k)=0(t≠0),有兩個(gè)根t
1、t
2,
且0<t
1<1<t
2或0<t
1<1,t
2=1.
記φ(t)=t
2-(2+3k)t+(1+2k),
則
或
∴k>0------
分析:(Ⅰ)由g(x)=a(x-1)
2+1+b-a(a>0)在[2,3]上為增函數(shù),可得
,從而可求得a、b的值;
(Ⅱ)f(x)-kx≥0在x∈(0,+∞)時(shí)恒成立?k≤1+
-
=
(x>0)恒成立,從而可求得實(shí)數(shù)k的取值范圍;
(Ⅲ)方程f(|2
x-1|)+k(
-3)=0?|2
x-1|
2-(2+3k)|2
x-1|+(1+2k)=0,(|2
x-1|≠0),令|2
x-1|=t,則t
2-(2+3k)t+(1+2k)=0(t≠0),構(gòu)造函數(shù)φ(t)=t
2-(2+3k)t+(1+2k),通過數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化的思想即可求得k的范圍.
點(diǎn)評(píng):本題考查二次函數(shù)在閉區(qū)間上的最值,考查函數(shù)恒成立問題問題,考查數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化、函數(shù)與方程思想的綜合應(yīng)用,屬于難題.