【題目】在三棱柱中,平面,,,,點(diǎn)D在棱上,且,建立如圖所示的空間直角坐標(biāo)系.
(1)當(dāng)時(shí),求異面直線與的夾角的余弦值;
(2)若二面角的平面角為,求的值.
【答案】(1);(2).
【解析】
(1)由建立的空間直角坐標(biāo)系,表示出和,利用向量的夾角公式即可求出異面直線與的夾角的余弦值;
(2)根據(jù)題意分別求出平面和平面的法向量,由二面角的平面角為,即可得到的值。
(1)易知,,,
因?yàn)?/span>, ,所以 .
當(dāng)時(shí), ,所以,,
所以.
由于異面直線所成角的范圍為,故異面直線與的夾角的余弦值為(2)由,可知, ,所以,
由(1)知, 設(shè)平面 的法向量為,
則 即 ,令,
解得,,
所以平面 的法向量為;
設(shè)平面的法向量為,
則,即
令,解得,,
所以平面的一個(gè)法向量為.
因?yàn)槎娼?/span>的平面角為,
所以 ,
即,解得或,由于,
故的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)說(shuō),在今后的三天中,每天下雨的概率都為.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:用表示下雨,從下列隨機(jī)數(shù)表的第行第列的開(kāi)始讀取,直到讀取了組數(shù)據(jù),
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10
55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24
據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,底面,底面是梯形,AB//DC,,
(1).求證:平面平面;
(2)求二面角的平面角的正弦值
(3).在線段上是否存在一點(diǎn),使AP//平面.若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2,AC=BC,F 是AB上一點(diǎn),且AF=AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知CE=.
(1)求證:AD⊥平面BCE;
(2)求證:AD∥平面CEF;
(3)求三棱錐A﹣CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)已知橢圓的離心率為,橢圓C的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB 為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用隨機(jī)模擬的方法可以估計(jì)圓周率的值,為此設(shè)計(jì)如圖所示的程序框圖,其中表示產(chǎn)生區(qū)間上的均勻隨機(jī)數(shù)(實(shí)數(shù)),若輸出的結(jié)果為786,則由此可估計(jì)的近似值為( )
A. 3.134 B. 3.141 C. 3.144 D. 3.147
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com