據(jù)報道,某市大學(xué)城今年4月份曾發(fā)生流感,據(jù)資料統(tǒng)計,4月1日,該大學(xué)城新的流感病毒感染者有4人,此后,每天新感染病毒的患者的人數(shù)平均比前一天新感染病毒的患者的人數(shù)多4人.由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天新感染病毒的患者的人數(shù)平均比前一天的新感染病毒的患者的人數(shù)減少2人,到4月30日止,該大學(xué)城在這30天內(nèi)感染該病毒的患者總共有600人.問4月幾日,該大學(xué)城感染此病毒的新患者(當(dāng)天感染者)人數(shù)最多?并求出這一天的新患者的人數(shù).
考點:根據(jù)實際問題選擇函數(shù)類型
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件建立方程過程,解方程即可得到結(jié)論.
解答: 解:設(shè)4月n號時新患者的人數(shù)最多,第i天的新患者的人數(shù)為ai人,依題意有:
[4+4+4(n-1)]n
2
+
[2+4(n-1)+2+4(n-1)-2(29-n)](30-n)
2
=600
得:3n2-183n+1530=0解得:n=10
此時an=40,
答:4月10號時新感染的患者的人數(shù)最多,有40人.
點評:本題主要考查函數(shù)的應(yīng)用問題,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中A(1,2,3),B (-1,0,5),C(3,0,4),D(4,1,3),則直線AB與CD的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2n,(n∈N*
(1)求數(shù)列{an}的通項公式an
(2)若數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列{
bn
an+2
}
的前n項和,求證:Tn
1
2
;
(3)數(shù)列{an}中是否存在三項ar,as,at,(r<s<t)成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-kx.
(1)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓x2+(y-1)2=1相切,求k的值;
(2)若k>0,且對于任意實數(shù)x≥0時,f(x)>0恒成立,試確定實數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+f(-x),求證:F(1)F(2)…F(n)>(en+1+2)
n
2
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
3
,an+1=an2+an,用[x]表示不超過x的最大整數(shù),則[
1
a1+1
+
1
a2+1
+…+
1
a2011+1
]的值等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin[π(x+1)]-
1
x-1
在x∈(
3
2
,3)時的零點在下列哪個區(qū)間上( 。
A、(
3
2
,
7
4
B、(
7
4
,2)
C、(2,
5
2
D、(
5
2
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 p:“一個有理數(shù)與一個無理數(shù)的和是無理數(shù)”,q:“一個有理數(shù)與一個無理數(shù)的積是無理數(shù)”,則命題 p、q、p∧q中的真命題是(  )
A、pB、q
C、p∧qD、p、q、p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程4x+(m-3)•2x+m=0有兩個不相同的實根,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)滿足f(
1
2
)=4,則f(x)的圖象所分布的象限是( 。
A、第一、二象限
B、第一、三象限
C、第一、四象限
D、只在第一象限

查看答案和解析>>

同步練習(xí)冊答案