15.已知關(guān)于x的函數(shù)y=loga(2-ax)在[1,2]上是增函數(shù),則a的取值范圍是( 。
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)

分析 由題意可得 a>0,函數(shù)t=2-ax在[1,2]上是減函數(shù),再結(jié)合對數(shù)函數(shù)的定義域,求得a的取值范圍.

解答 解:∵關(guān)于x的函數(shù)y=loga(2-ax)在[1,2]上是增函數(shù),∴a>0,
∴函數(shù)t=2-ax在[1,2]上是減函數(shù),∴0<a<1.
再根據(jù)$\left\{\begin{array}{l}{0<a<1}\\{2-2a>0}\\{2-a>0}\end{array}\right.$,求得0<a<1,
故選:A.

點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,一次函數(shù)、對數(shù)函數(shù)的定義域及單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{x+3}{{{x^2}+6x+13}}$在區(qū)間[-2,2]上的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程mx2+2x+1=0至少有一個負(fù)根,則( 。
A.0<m<1或m<0B.0<m<1C.m<1D.m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.關(guān)于x的方程$\sqrt{1-{x}^{2}}$=kx+2有唯一實數(shù)解,則實數(shù)k的取值范圍是( 。
A.$\left\{{±\sqrt{3}}\right\}$B.(-∞,-2)∪(2,+∞)C.(-2,2)D.$({-∞,-2})∪\left\{{±\sqrt{3}}\right\}∪({2,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\sqrt{\frac{x}{2-x}}$,則函數(shù)$g(x)=f(x+\frac{1}{2})+f(x-\frac{1}{2})$的定義域是[$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對稱軸為y軸,且θ∈(0,π).求θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線一條漸近線的斜率為$\sqrt{3}$,焦點是(-4,0)、(4,0),則雙曲線方程為( 。
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第20項與5的差即a20-5=( 。
A.252B.263C.258D.247

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
試從上述五個式子中選擇一個,求出這個常數(shù);并根據(jù)你的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案