已知向量a=(cos x,- ),b=(sin x,cos 2x),x∈R,設(shè)函數(shù)f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在[0,]上的最大值和最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若拋物線y2=2px(p>0)上一點(diǎn)P到焦點(diǎn)和拋物線的對稱軸的距離分別為10和6,則p的值為( )
(A)2 (B)18
(C)2或18 (D)4或16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,AB是半徑等于3的☉O的直徑,CD是☉O的弦,BA,DC的延長線交于點(diǎn)P,若PA=4,PC=5,則∠CBD= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如果△A1B1C1的三個內(nèi)角的余弦值分別等于△A2B2C2的三個內(nèi)角的正弦值,那么( )
(A)△A1B1C1和△A2B2C2都是銳角三角形
(B)△A1B1C1和△A2B2C2都是鈍角三角形
(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形
(D)△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(θ)=sin θ+cos θ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(,),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω: 上的一個動點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)=sin 2x+2cos2x-,函數(shù)g(x)=
mcos(2x-)-2m+3(m>0),若存在x1,x2∈[0, ],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線-=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為( )
(A) -=1 (B) -=1
(C) -=1 (D) -=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓+=1的焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上.若|PF1|=4,則|PF2|= ,∠F1PF2的大小為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com