【題目】已知函數(shù)f(x)=x3﹣2x+ex﹣ ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實數(shù)a的取值范圍是 .
【答案】[﹣1, ]
【解析】解:函數(shù)f(x)=x3﹣2x+ex﹣ 的導(dǎo)數(shù)為:
f′(x)=3x2﹣2+ex+ ≥﹣2+2 =0,
可得f(x)在R上遞增;
又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣ex+x3﹣2x+ex﹣ =0,
可得f(x)為奇函數(shù),
則f(a﹣1)+f(2a2)≤0,
即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),
即有2a2≤1﹣a,
解得﹣1≤a≤ ,
所以答案是:[﹣1, ].
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛汽車,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表: A型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛,請你根據(jù)所學(xué)的統(tǒng)計知識,給出建議應(yīng)該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),一個焦點(diǎn)F(﹣2,0),且長軸長與短軸長的比是 .
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng) 最小時,點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點(diǎn)B(-2,0)的動直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn).
(1)求圓A的方程;
(2)當(dāng)|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=AA1=1,E為BC中點(diǎn).
(1)求證:C1D⊥D1E;
(2)若二面角B1﹣AE﹣D1的大小為90°,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是復(fù)平面上的四個點(diǎn),且向量 , 對應(yīng)的復(fù)數(shù)分別為z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2為實數(shù),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個極值點(diǎn),則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),則實數(shù)a的取值范圍是( )
A.a≤1
B.a≥1
C.a≤0
D.a≥0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com