在直角坐標(biāo)系xoy上取兩個定點(diǎn)A1(-2,0),A2(2,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=3.

(Ⅰ)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;

(Ⅱ)已知點(diǎn)A(1,t)(t>0)是軌跡M上的定點(diǎn),E,F(xiàn)是軌跡M上的兩個動點(diǎn),如果直線AE的斜率kAE與直線AF的斜率kAF滿足kAE+kAF=0,試探究直線EF的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

答案:
解析:

  解:(Ⅰ)依題意知直線的方程為:① 2分

  直線的方程為:② 3分

  設(shè)是直線交點(diǎn),①×②得

  由

  整理得 4分

  ∵不與原點(diǎn)重合 ∴點(diǎn)不在軌跡M上 5分

  ∴軌跡M的方程為() 6分

  (Ⅱ)∵點(diǎn)()在軌跡M

  ∴解得

  即點(diǎn)A的坐標(biāo)為 7分

  設(shè),則直線AE方程為:,代入并整理得

   9分

  設(shè),,∵點(diǎn)在軌跡M上,

  ∴③,④ 11分

  又

  得,將③、④式中的代換成,可得

  , 12分

  ∴直線EF的斜率 13分

  ∵

  ∴

  即直線EF的斜率為定值,其值為 15分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy上取兩個定點(diǎn)A1(-2,0),A2(2,0),再取兩個動點(diǎn)N1(0,m)、N2(0,n)且mn=3.
(Ⅰ)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;
(Ⅱ)已知F2(1,0),設(shè)直線l:y=kx+m與(Ⅰ)中的軌跡M交于P、Q兩點(diǎn),直線F2P、F2Q的傾斜角分別為α、β,且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy上取兩個定點(diǎn)A1(-2,0),A2(2,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;
(2)已知點(diǎn)A(1,t)(t>0)是軌跡M上的定點(diǎn),E,F(xiàn)是軌跡M上的兩個動點(diǎn),如果直線AE的斜率kAE與直線AF的斜率kAF滿足kAE+kAF=0,試探究直線EF的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy上取兩個定點(diǎn)A1(-2,0),A2(2,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=3.則直線A1N1與A2N2交點(diǎn)的軌跡M的方程
x2
4
+
y2
3
=1(x≠±2)
x2
4
+
y2
3
=1(x≠±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省模擬題 題型:解答題

在直角坐標(biāo)系xOy上取兩個定點(diǎn)A1(-2,0),A2(2,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=3。
(1)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;
(2)已知點(diǎn)G(1,0)和G′(-1,0),點(diǎn)P在軌跡M上運(yùn)動,現(xiàn)以P為圓心,PG為半徑作圓P,試探究是否存在一個以點(diǎn)G′(-1,0)為圓心的定圓,總與圓P內(nèi)切?若存在,求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省重點(diǎn)中學(xué)協(xié)作體高三(上)摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在直角坐標(biāo)系xoy上取兩個定點(diǎn)A1(-2,0),A2(2,0),再取兩個動點(diǎn)N1(0,m),N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;
(2)已知點(diǎn)A(1,t)(t>0)是軌跡M上的定點(diǎn),E,F(xiàn)是軌跡M上的兩個動點(diǎn),如果直線AE的斜率kAE與直線AF的斜率kAF滿足kAE+kAF=0,試探究直線EF的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案