精英家教網 > 高中數學 > 題目詳情
在直角坐標系xOy上取兩個定點A1(-2,0),A2(2,0),再取兩個動點N1(0,m),N2(0,n),且mn=3。
(1)求直線A1N1與A2N2交點的軌跡M的方程;
(2)已知點G(1,0)和G′(-1,0),點P在軌跡M上運動,現以P為圓心,PG為半徑作圓P,試探究是否存在一個以點G′(-1,0)為圓心的定圓,總與圓P內切?若存在,求出該定圓的方程;若不存在,請說明理由.
解:(1)依題意知,直線的方程為:,①
直線的方程為:,    ②
設Q(x,y)是直線的交點,①×②得,
由mn=3,整理得
不與原點重合,
∴點不在軌跡M上,
∴軌跡M的方程為(x≠±2)。
(2)由(1)知,點G(1,0)和G′(-1,0)為橢圓的兩焦點,
由橢圓的定義,得,即
∴以G′為圓心,以4為半徑的圓與⊙P內切,
即存在定圓⊙G′,該定圓與⊙P恒內切,其方程為。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在直角坐標系xoy上取兩個定點A1(-2,0),A2(2,0),再取兩個動點N1(0,m)、N2(0,n)且mn=3.
(Ⅰ)求直線A1N1與A2N2交點的軌跡M的方程;
(Ⅱ)已知F2(1,0),設直線l:y=kx+m與(Ⅰ)中的軌跡M交于P、Q兩點,直線F2P、F2Q的傾斜角分別為α、β,且α+β=π,求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標系xoy上取兩個定點A1(-2,0),A2(2,0),再取兩個動點N1(0,m),N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點的軌跡M的方程;
(2)已知點A(1,t)(t>0)是軌跡M上的定點,E,F是軌跡M上的兩個動點,如果直線AE的斜率kAE與直線AF的斜率kAF滿足kAE+kAF=0,試探究直線EF的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標系xoy上取兩個定點A1(-2,0),A2(2,0),再取兩個動點N1(0,m),N2(0,n),且mn=3.則直線A1N1與A2N2交點的軌跡M的方程
x2
4
+
y2
3
=1(x≠±2)
x2
4
+
y2
3
=1(x≠±2)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省重點中學協作體高三(上)摸底數學試卷(文科)(解析版) 題型:解答題

在直角坐標系xoy上取兩個定點A1(-2,0),A2(2,0),再取兩個動點N1(0,m),N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點的軌跡M的方程;
(2)已知點A(1,t)(t>0)是軌跡M上的定點,E,F是軌跡M上的兩個動點,如果直線AE的斜率kAE與直線AF的斜率kAF滿足kAE+kAF=0,試探究直線EF的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習冊答案