【題目】已知點為拋物線: 的焦點,點是準線上的動點,直線交拋物線于兩點,若點的縱坐標為,點為準線與軸的交點.
(1)求直線的方程;
(2)求的面積范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P從單位正方形ABCD頂點A開始,順次經(jīng)B、C、D繞邊界一周,當 表示點P的行程, 表示PA之長時,求y關(guān)于x的解析式,并求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是( )﹒
A.平面PACB.C.D.平面平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓,圓.
(1)若過點的直線被圓截得的弦長為,求直線的方程;
(2)設(shè)動圓同時平分圓的周長、圓的周長.
①證明:動圓圓心在一條定直線上運動;
②動圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,且過點A (2,2),橢圓的離心率為,點B為拋物線C與橢圓D的一個公共點,且.
(Ⅰ)求橢圓D的方程;
(Ⅱ)過橢圓內(nèi)一點P(0,t)的直線l的斜率為k,且與橢圓C交于M,N兩點,設(shè)直線OM,ON(O為坐標原點)的斜率分別為k1,k2,若對任意k,存在實數(shù)λ,使得k1+ k2=λk,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求||;
(2)已知點D是AB上一點,滿足=λ,點E是邊CB上一點,滿足=λ.
①當λ=時,求;
②是否存在非零實數(shù)λ,使得⊥?若存在,求出的λ值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國第一高摩天輪“南昌之星摩天輪”高度為,其中心距地面,半徑為,若某人從最低點處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時間變化,后達到最高點,從登上摩天輪時開始計時.
(1)求出人與地面距離與時間的函數(shù)解析式;
(2)從登上摩天輪到旋轉(zhuǎn)一周過程中,有多長時間人與地面距離大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()的圖像上存在點,函數(shù)的圖像上存在點,且關(guān)于原點對稱,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店銷售剛剛上市的某高二數(shù)學(xué)單元測試卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如下數(shù)據(jù):
單價x/元 | 18 | 19 | 20 | 21 | 22 |
銷量y/冊 | 61 | 56 | 50 | 48 | 45 |
(1)求試銷天的銷量的方差和關(guān)于的回歸直線方程;
附: .
(2)預(yù)計以后的銷售中,銷量與單價服從上題中的回歸直線方程,已知每冊單元測試卷的成本是10元,為了獲得最大利潤,該單元測試卷的單價應(yīng)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com