已知函數(shù)f(x)=
2-x(x≤0)
-x2+2ax+1(x>0)
(a∈R),則下列結論正確的是( 。
A.?a∈R,f(x)有最大值f(a)
B.?a∈R,f(x)有最小值f(0)
C.?a∈R,f(x)有唯一零點
D.?a∈R,f(x)有極大值和極小值
根據(jù)指數(shù)函數(shù)及二次函數(shù)的性質,我們可得:
函數(shù)f(x)=
2-x(x≤0)
-x2+2ax+1(x>0)
(a∈R),即為最大值,也無最小值,故A,B均錯誤;
函數(shù)的圖象也X軸有且只有一個交點,故C?a∈R,f(x)有唯一零點,正確;
當a>0時,f(x)有極大值f(a)和極小值f(0),當a≤0時,f(x)沒有極大值和極小值,故D錯誤;
故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案