在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,構(gòu)成一個三棱錐.

(1)判別MN與平面AEF的位置關(guān)系,并給出證明;

(2)證明AB⊥平面BEF;

(3)求多面體E-AFNM的體積.

 

【答案】

(1),證明見解析(2)證明見解析(3)

【解析】(I)顯然可判斷出MN//AF,所以MN//平面AEF.

(2)由平面圖形可知,即立體圖形中,問題得證.

(3)可利用來求體積.

解:,   ………1分

證明如下:

因翻折后B、C、D重合(如圖),

所以MN應(yīng)是的一條中位線,…………3分

.………6分

(2)因為 且

平面BEF,                           …………8分

(3)  方法一 

,     ………………10分

  ……………12分

.     ………………………14分

方法二:

  ………………10分

由(2)知AB即是三棱錐A-BEF的高,AB=4

MB即是三棱錐M-BEN的高,MB=2,……………………11分

……………………13分

   …………………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建四地六校高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合于B,構(gòu)成一個三棱錐(如圖所示).

(Ⅰ)在三棱錐上標注出點,并判別MN與平面AEF的位置關(guān)系,并給出證明;

(Ⅱ)是線段上一點,且,問是否存在點使得,若存在,求出的值;若不存在,請說明理由;

(Ⅲ)求多面體E-AFNM的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省珠海市高三9月摸底考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,重合后的點記為,構(gòu)成一個三棱錐.

(1)請判斷與平面的位置關(guān)系,并給出證明;

(2)證明平面;

(3)求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三5月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為ABCF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合于B,構(gòu)成一個三棱錐(如圖所示).

   

(Ⅰ)在三棱錐上標注出、點,并判別MN與平面AEF的位置關(guān)系,并給出證明;

(Ⅱ)是線段上一點,且, 問是否存在點使得,若存在,求出的值;若不存在,請說明理由;

(Ⅲ)求多面體E-AFNM的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題文科數(shù)學(xué)試卷(解析版) 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,構(gòu)成一個三棱錐.

(I)判別MN與平面AEF的位置關(guān)系,并給出證明;

(II)求多面體E-AFMN的體積.

                 

【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應(yīng)是的一條中位線,則利用線線平行得到線面平行。

第二問因為平面BEF,……………8分

,又 ∴

(1)因翻折后B、C、D重合(如圖),

所以MN應(yīng)是的一條中位線,………………3分

.………6分

(2)因為平面BEF,……………8分

,

,………………………………………10分

 ∴

 

查看答案和解析>>

同步練習(xí)冊答案