已知是橢圓的兩個(gè)焦點(diǎn),為橢圓上的一點(diǎn),且,則的面積是(  )
A.7B.C.D.
B

試題分析:由于橢圓方程,則可知因此可知其左焦點(diǎn)的坐標(biāo)為(),AF1的直線方程為:y=,與橢圓方程聯(lián)立,則可知交點(diǎn)的坐標(biāo)為,則可知A的坐標(biāo),然后利用,故選B.
點(diǎn)評(píng):解決焦點(diǎn)三角形的面積,主要根據(jù)直線與橢圓相交,得到交點(diǎn)的坐標(biāo),進(jìn)而確定出三角形的高度,利用面積公式來得到結(jié)論,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個(gè)動(dòng)點(diǎn),且,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求點(diǎn)在上, 點(diǎn)在上,且對(duì)角線過點(diǎn),已知米,米.
(1)要使矩形的面積大于32平方米,則的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)的長度為多少時(shí),矩形花壇的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的焦距為10,點(diǎn)在其漸近線上,則雙曲線的方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為,則拋物線方程是(   )
A.,B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的離心率等于,且與雙曲線有相同的焦距,則橢圓的標(biāo)準(zhǔn)方程為________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)在軸上,離心率為,則的值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案