已知數(shù)列{an}的前n項和為Sn,且曲線y=x2-nx+1(n∈N*)在x=an處的切線的斜率恰好為Sn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和為Tn
(3)求證:
1
a1
+
1
a2
+
1
a3
+…
1
an
5
3
(1)y’=2x-n,由導數(shù)的幾何意義,得Sn=2an-n①,(1分)則Sn+1=2an+1-(n+1)②,
②一④得:an+l=2an+1-2an-1,即an+1=2an+l,(2分)故an+1=2(an+1).(3分)
由①知,al=S1=2a1-1,得a1=1.(4分)
∴{an+1}是首項為2,公比為2的等比數(shù)列,
∴an+l=2n,即an=2n-l(n∈N*).(5分)
(2)由(1)知,nan=n(2n-1)=n•2n-n,則Tn=(1•2+2•22+3•23++n•2n)-(1+2+3++n)=An-
n(n+1)
2
,其中An=1•2+2•22+3•23++n•2n,①2An=1•22+2•23++(n-1)•2n+n•2n+1,②
①一②得:-An=2+22+23++2n-n•2n+1=
2(1-2n)
1-2
-n•2n+1=2n+1-2-n•2n+1

∴An=(n-1)2n+1+2(8分)故Tn=(n-1)2n+1+2-
n(n+1)
2
(9分)
(3)∵
1
an
=
1
2n-1
=
2n+1-1
(2n-1)(2n+1-1)
2n+1
(2n-1)(2n+1-1)
=2•
(2n+1-1)-(2n-1)
(2n-1)(2n+1-1)
=2(
1
2n-1
-
1
2n+1-1
)(n≥2)
(12分)∴
1
a1
+
1
a2
+
1
a3
++
1
an
<1+2[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)++(
1.
2n-1
-
1
2n+1-1
)]
=1+2(
1
22-1
-
1
2n+1-1
)<1+2•
1
3
=
5
3
(l4分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案