解:(1)由
得
,(3分)
由f(x)+f(2-x)=0得f(x)+f(-x)=0,(4分)
故f(x)是奇函數(shù).(5分)
(2)當(dāng)x∈
時,
,
∴f(1-x)=3
1-x. (7分)
而
,
∴f(x)=3
x-1. (9分)
當(dāng)x∈
Z)時,
,
∴f(x-2k)=3
x-2k-1,
因此f(x)=f(x-2k)=3
x-2k-1. (11分)
(3)不等式log
3f(x)>x
2-kx-2k即為x-2k-1>x
2-kx-2k,
即x
2-(k+1)x+1<0. (13分)
令g(x)=x
2-(k+1)x+1,對稱軸為
,
因此函數(shù)g(x)在
上單調(diào)遞增. (15分)
因為
,又k為正整數(shù),
所以
,因此x
2-(k+1)x+1>0在
上恒成立,(17分)
因此不存在正整數(shù)k使不等式有解. (18分)
分析:(1)由已知中
,可得
,進(jìn)而結(jié)合f(x)+f(2-x)=0,可得f(x)+f(-x)=0,結(jié)合奇函數(shù)的定義,可得答案.
(2)由已知中當(dāng)
時,f(x)=3
x.結(jié)合(1)中結(jié)論,可得f(x)在區(qū)間
Z)上的解析式;
(3)由(2)的結(jié)論及指數(shù)的運算性質(zhì),我依次為可將不等式log
3f(x)>x
2-kx-2k轉(zhuǎn)化為二次不等式的形式,進(jìn)而分析出對應(yīng)函數(shù)在區(qū)間
上的單調(diào)性,即可得到結(jié)論.
點評:本題考查的知識點是對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用,其中(1)的關(guān)鍵由已知條件得到f(x)+f(-x)=0,(2)的關(guān)鍵是由已知判斷出f(x)=f(x-2k),(3)的關(guān)鍵是根據(jù)(2)的結(jié)論構(gòu)造關(guān)于k的不等式.