已知等差數(shù)列{an}的前n項和為sn,a1+a5=
1
2
s5
,且a9=20,則s11=( 。
A、260B、220
C、130D、110
分析:先根據(jù)等差數(shù)列前n項和公式寫出s5,由a1+a5=
1
2
s5得到a1=a5,從而判斷{an}是等差為1的等差數(shù)列,即可求出結果..
解答:解:{an}為等差數(shù)列
∴s5=
5(a1+a5
2

又∵a1+a5=
1
2
s5

∴a1=a5∴{an}是等差為1的等差數(shù)列
∵a9=20
∴數(shù)列{an}的各項都是20
∴S11=11×20=220
故選B.
點評:本題考查了等差數(shù)列的性質,判斷{an}是等差為1的等差數(shù)列是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案