在(x-)10的展開式中,x6的系數(shù)是________.

 

1890

【解析】Tr+1=x10-r(-)r,令10-r=6,r=4,T5=9x6=1890x6.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)非零常數(shù)d是等差數(shù)列x1,x2,x3,…,x19的公差,隨機(jī)變量ξ等可能地取值x1,x2,x3,…,x19,則方差V(ξ)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

黃山旅游公司為了體現(xiàn)尊師重教,在每年暑假期間對來黃山旅游的全國各地教師和學(xué)生,憑教師證和學(xué)生證實(shí)行購買門票優(yōu)惠.某旅游公司組織有22名游客的旅游團(tuán)到黃山旅游,其中有14名教師和8名學(xué)生.但是只有10名教師帶了教師證,6名學(xué)生帶了學(xué)生證.

(1)在該旅游團(tuán)中隨機(jī)采訪3名游客,求恰有1人持有教師證且持有學(xué)生證者最多1人的概率;

(2)在該團(tuán)中隨機(jī)采訪3名學(xué)生,設(shè)其中持有學(xué)生證的人數(shù)為隨機(jī)變量ξ,求ξ的分布列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

已知(1+ax)(1+x)5的展開式中x2的系數(shù)為5,則a=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

若(1+x)n的展開式中,x3的系數(shù)是x的系數(shù)的7倍,求n;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:解答題

拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為,求拋物線與雙曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線C1:=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線=1(a>0,b>0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若PF=5,則雙曲線的漸近線方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.

(1)求橢圓C的方程;

(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.

 

查看答案和解析>>

同步練習(xí)冊答案