【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____

【答案】3

【解析】

設(shè)直線AB的方程為ykx+1,則直線AC的方程可設(shè)為yx+1,(k≠0),聯(lián)立方程得到B),故S,令t,得S,利用均值不等式得到答案.

設(shè)直線AB的方程為ykx+1,則直線AC的方程可設(shè)為yx+1,(k≠0

消去y,得(1+a2k2x2+2a2kx0,所以x0x

A的坐標(biāo)(01),∴B的坐標(biāo)為(k1),即B),

因此AB,

同理可得:AC.

RtABC的面積為SABAC

t,得S.

t2,∴SABC.

當(dāng)且僅當(dāng),即t時,△ABC的面積S有最大值為.

解之得a3a.

a時,t2不符合題意,∴a3.

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù))的部分圖象如圖中實線所示,圖中圓C的圖象交于M,N兩點,且My軸上,則下列說法中正確的是(

A.函數(shù)的最小正周期是2π

B.函數(shù)的圖象關(guān)于點成中心對稱

C.函數(shù)單調(diào)遞增

D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到:任畫…條線段,然后把它分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了由4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每一條小線段重復(fù)上述步驟,得到由16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”;…;如此進(jìn)行“n次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度大于初始線段的100倍,則至少需要構(gòu)造的次數(shù)是( )(取,

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】滕州市公交公司一切為了市民著想,為方便市區(qū)學(xué)生的上下學(xué),專門開通了學(xué)生公交專線,在學(xué)生上學(xué)、放學(xué)的時間段運(yùn)行,為了更好地掌握發(fā)車間隔時間,公司工作人員對滕州二中車站發(fā)車間隔時間與侯車人數(shù)之間的關(guān)系進(jìn)行了調(diào)查研究,現(xiàn)得到如下數(shù)據(jù):

間隔時間(分鐘)

10

11

13

12

15

14

侯車人數(shù)(人)

23

25

29

26

31

28

調(diào)查小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)求選取的2組數(shù)據(jù)不相鄰的概率;

2)若選取的是前兩組數(shù)據(jù),請根據(jù)后四組數(shù)據(jù),求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的差均不超過1人,則稱為最佳回歸方程,在(2)中求出的回歸方程是否是最佳回歸方程?若規(guī)定一輛公交車的載客人數(shù)不超過35人,則間隔時間設(shè)置為18分鐘,是否合適?

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到點的距離比到直線的距離小,設(shè)點的軌跡為曲線.

1)求曲線的方程;

2)過曲線上一點)作兩條直線,與曲線分別交于不同的兩點,若直線,的斜率分別為,且.證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對有個元素的總體進(jìn)行抽樣,先將總體分成兩個子總體是給定的正整數(shù),且),再從每個子總體中各隨機(jī)抽取2個元素組成樣本.表示元素同時出現(xiàn)在樣本中的概率.

1)求的表達(dá)式(用表示);

2)求所有的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點,是曲線上的一點, ,若的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線,在軸正半軸上有一點,過點作直線,分別交拋物線于點,過點垂直于軸分別交于點.當(dāng),直線的斜率為1時,.

1)求拋物線的方程;

2)判斷是否為定值,若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的零點構(gòu)成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個單位,得到函數(shù)的圖象.關(guān)于函數(shù),下列說法正確的是( )

A. 上是增函數(shù)B. 其圖象關(guān)于直線對稱

C. 函數(shù)是偶函數(shù)D. 在區(qū)間上的值域為

查看答案和解析>>

同步練習(xí)冊答案