3.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≤0}\\{-{x}^{2}-2x+3,x>0}\end{array}$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,則實數(shù)a的取值范圍是( 。
A.(-2,0)B.(-∞,0)C.(0,2)D.(-∞,-2)

分析 由分段函數(shù)知,分兩部分討論函數(shù)的單調(diào)性,從而可得f(x)在R上是減函數(shù),化恒成立問題為x+a<2a-x在[a,a+1]上恒成立;從而化為最值問題即可.

解答 解:由f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≤0}\\{-{x}^{2}-2x+3,x>0}\end{array}$,知:
①當(dāng)x≤0時,f(x)=x2-4x+3=(x-2)2-1,
故f(x)在(-∞,0]上是減函數(shù);
②當(dāng)x>0時,f(x)=-x2-2x+3=-(x+1)2+4,
故f(x)在(0,+∞)上是減函數(shù);
又∵(0-2)2-1=-(0+1)2+4,
∴f(x)在R上是減函數(shù),
∴不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立可化為
x+a<2a-x在[a,a+1]上恒成立;
即2x<a在[a,a+1]上恒成立,
故2(a+1)<a,
解得,a<-2;
故選:D.

點評 本題考查了分段函數(shù)的性質(zhì)應(yīng)用及分段函數(shù)的單調(diào)性的判斷,同時考查了恒成立問題化為最值問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的通項公式是an=24-2n,在下列各數(shù)中,( 。┎皇莧an}的項.
A.-2B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow a,\overrightarrow b$為非零向量,滿足$({\overrightarrow a-2\overrightarrow b})⊥\overrightarrow a;({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC中,“$A>\frac{π}{6}$”是“$cosA<\frac{1}{2}$”的(  )條件.
A.充要條件B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知{an}為公差不為零的等差數(shù)列,首項a1=a,{an}的部分項${a_{k_1}}$、${a_{k_2}}$、…、${a_{k_n}}$恰為等比數(shù)列,且k1=1,k2=5,k3=17.
(1)求數(shù)列{an}的通項公式an(用a表示);
(2)設(shè)數(shù)列{kn}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.集合{1,2,4}的真子集個數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若四邊形ABCD滿足$\overrightarrow{AB}•\overrightarrow{BC}<0$,$\overrightarrow{CD}•\overrightarrow{DA}<0$,$\overrightarrow{BC}•\overrightarrow{CD}<0$,$\overrightarrow{DA}$$•\overrightarrow{AB}$<0,則該四邊形為( 。
A.空間四邊形B.任意的四邊形C.梯形D.平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知以F為焦點的拋物線y2=4x上的兩點A,B滿足$\overrightarrow{AF}=\frac{3}{2}\overrightarrow{FB}$,則直線AB的斜率為(  )
A.$±\sqrt{3}$B.$±\sqrt{13}$C.±4D.$±2\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“3<m<7”是“方程$\frac{{x}^{2}}{7-m}$+$\frac{{y}^{2}}{m-3}$=1的曲線是橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分條件又不必要條件

查看答案和解析>>

同步練習(xí)冊答案