設(shè)等差數(shù)列an的前n項和為Sn,且S4=-62,S6=-75,求數(shù)列an的通項公式an
分析:設(shè)出等差數(shù)列的首項和公差,然后利用待定系數(shù)法根據(jù)S4=-62,S6=-75求出數(shù)列的通項公式即可.
解答:解:依題意得:
S4=4a1+
4×3
2
d=-62
S6=6a1+
6×5
2
d=-75

解得:d=3,a1=-20
∴an=a1+(n-1)d=3n-23.
點評:本題主要考查等差數(shù)列的前n項和的公式,解題的方法是利用待定系數(shù)法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an} 的前n項和為Sn,則S12>0是S9≥S3的(  )
A、充分但不必要條件B、必要但不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若S6>S7>S5,則滿足Sn•Sn+1<0的正整數(shù)n的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項的和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項公式an;
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a11-a8=3,S11-S8=3,則使an>0的最小正整數(shù)n的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a7-1)3+2012(a7-1)=1(a2006-1)3+2012(a2006-1)=-1,則S2012=
2012
2012

查看答案和解析>>

同步練習(xí)冊答案