已知函數(shù)f(x)=x3-ax2-bx+a2(a<0)在x=1時(shí)有極值10
(1)求a,b的值及函數(shù)的單調(diào)遞增區(qū)間;
(2)求函數(shù)在[-3,3]的最大值及最小值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)極值的定義得出
f′(1)=0
f(1)=10
,解方程組得出a,b.所以f′(x)=3x2+8x-11=(x-1)(3x+11),由f′(x)>0得單調(diào)遞增區(qū)間.
(2)分別求得函數(shù)在[-3,3]的極值和端點(diǎn)值,得出最大值及最小值
解答: 解:(1)f′(x)=3x2-2ax-b,得出
f′(1)=0
f(1)=10
,即
3-2a-b=0
1-a-b+a2=10.
解得
a=3
b=-3
a=-4
b=11.

因?yàn)閍<0,所以a=-4,b=11
所以f′(x)=3x2+8x-11=(x-1)(3x+11),由f′(x)>0得,x<-
11
3
或x>1
,
故增區(qū)間是(-∞,-
11
3
) ,(1,+∞)
…(8分)
(2)由(1)得f(x)在[-3,3]上的增區(qū)間是[1,3],減區(qū)間是[-3,1],
f(-3)=58,f(1)=10,f(3)=46,故最大值是58,最小值是10…(12分)
點(diǎn)評(píng):本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性,考查學(xué)生運(yùn)用所學(xué)知識(shí)分析解決問(wèn)題的能力,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=f(x)通過(guò)點(diǎn)(2,2
2
),則冪函數(shù)的解析式為( 。
A、y=2x 
1
2
B、y=x 
1
2
C、y=x 
3
2
D、y=
1
2
x 
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=ax2-x(a∈R),
(1)求f(x)的單調(diào)區(qū)間和極值點(diǎn);
(2)求使f(x)≤g(x)恒成立的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極大值、極小值;
(Ⅱ)過(guò)點(diǎn)(0,-16)作曲線(xiàn)y=f(x)的切線(xiàn),求此切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-k-x,(x∈R)
(1)當(dāng)k=0時(shí),若函數(shù)g(x)=lg[f(x)+m]的定義域是R,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)k>1時(shí),討論函數(shù)f(x)在區(qū)間(k,2k)內(nèi)的零點(diǎn)個(gè)數(shù);
(3)若方程f(x)=x2+1在區(qū)間(-1,+∞)內(nèi)有三個(gè)不等實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:y=
2x+3
x+1
(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>0,a≠1).
(1)當(dāng)a>1時(shí),試判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(2)當(dāng)b=4,a=e(e是自然對(duì)數(shù)的底數(shù),e=2.71828…)時(shí),求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點(diǎn);
(3)當(dāng)b=0時(shí),若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x+1)ekx,(k為常數(shù),k≠0).
(Ⅰ)當(dāng)k=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+x2-ax(a為常數(shù)).
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)當(dāng)0<a≤2時(shí),試判斷f(x)的單調(diào)性;
(3)若對(duì)任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案