若f(x)在區(qū)間I上單調(diào)遞增,g(x)在區(qū)間I上單調(diào)遞減,則f(x)-g(x)在區(qū)間I上單調(diào)遞增.
 
(判斷對(duì)錯(cuò))
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性的性質(zhì)即可得到結(jié)論.
解答: 解:∵g(x)在區(qū)間I上單調(diào)遞減,
∴-g(x)在區(qū)間I上單調(diào)遞增,
∵f(x)在區(qū)間I上單調(diào)遞增,
∴f(x)-g(x)在區(qū)間I上單調(diào)遞增,正確,
故答案為:正確
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的判斷,根據(jù)函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,將圓分割成4部分;畫3條線段,將圓最多分割成7部分;畫4條線段,將圓最多分割成11部分.

(1)記在圓內(nèi)畫n條線段,將圓最多分割成an部分,歸納出an+1與an的關(guān)系;
(2)猜想數(shù)列{an}的通項(xiàng)公式,根據(jù)an+1與an的關(guān)系及數(shù)列的知識(shí),證明你的猜想是否成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零向量
a
,
b
滿足|
a
|=1,|
a
+2
b
|=1,則|
a
+
b
|+|
b
|的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|ax+2=3a},集合B={ x|x2-(a+1)x+a=0 },若集合A?B,則a=
 
,集合A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直線坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l:y=x與圓C:ρ=4cosθ相交于A、B兩點(diǎn),則以AB為直徑的圓的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={-3,a+1},B={2a-1,a-3,a2+1},若A∩B={-3},則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓ρ=sinθ-cosθ(ρ>0,0≤θ<2π)的圓心的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列結(jié)論:
①若
a
=
b
b
=
c
,則
a
=
c
;  
②若
a
b
,
b
c
,則
a
c
;
③|
a
b
|=|
a
|•|
b
|;  
④若
b
=
c
,則
a
b
=
a
c

其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題:設(shè)x、y、z∈R+,a=x+
1
y
,b=y+
1
z
,c=z+
1
x
,則a、b、c三個(gè)數(shù)至少有一個(gè)不小于2,下列假設(shè)中正確的是( 。
A、假設(shè)a,b,c三個(gè)數(shù)至少有一個(gè)不大于2
B、假設(shè)a,b,c三個(gè)數(shù)都不小于2
C、假設(shè)a,b,c三個(gè)數(shù)至多有一個(gè)不大于2
D、假設(shè)a,b,c三個(gè)數(shù)都小于2

查看答案和解析>>

同步練習(xí)冊(cè)答案