【題目】曾玉、劉云、李夢、張熙四人被北京大學(xué)、清華大學(xué)、武漢大學(xué)和復(fù)旦大學(xué)錄取,他們分別被哪個(gè)學(xué)校錄取,同學(xué)們做了如下的猜想

甲同學(xué)猜:曾玉被武漢大學(xué)錄取,李夢被復(fù)旦大學(xué)錄取

同學(xué)乙猜:劉云被清華大學(xué)錄取,張熙被北京大學(xué)錄取

同學(xué)丙猜:曾玉被復(fù)旦大學(xué)錄取,李夢被清華大學(xué)錄取

同學(xué)丁猜:劉云被清華大學(xué)錄取,張熙被武漢大學(xué)錄取

結(jié)果,恰好有三位同學(xué)的猜想各對了一半,還有一位同學(xué)的猜想都不對

那么曾玉、劉云、李夢、張熙四人被錄取的大小可能是(

A.北京大學(xué)、清華大學(xué)、復(fù)旦大學(xué)、武漢大學(xué)

B.武漢大學(xué)、清華大學(xué)、復(fù)旦大學(xué)、北京大學(xué)

C.清華大學(xué)、北京大學(xué)、武漢大學(xué) 、復(fù)旦大學(xué)

D.武漢大學(xué)、復(fù)旦大學(xué)、清華大學(xué)、北京大學(xué)

【答案】D

【解析】

推理得到甲對了前一半,乙對了后一半,丙對了后一半,丁全錯(cuò),得到答案.

根據(jù)題意:甲對了前一半,乙對了后一半,丙對了后一半,丁全錯(cuò),

曾玉、劉云、李夢、張熙被錄取的大學(xué)為武漢大學(xué)、復(fù)旦大學(xué)、清華大學(xué)、北京大學(xué)

(另外武漢大學(xué)、清華大學(xué)、北京大學(xué)、復(fù)旦大學(xué)也滿足).

故選:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中,為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)若分別是的極大值點(diǎn)和極小值點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,直線平面,且.

1)求二面角的大;

2)設(shè)E為棱的中點(diǎn),在的內(nèi)部或邊上是否存在一點(diǎn),使平面?若存在,求出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)P的坐標(biāo)為.

1)求橢圓M的方程;

2)設(shè)橢圓的右頂點(diǎn)為C,不經(jīng)過點(diǎn)C的直線l與橢圓M交于A,B兩點(diǎn),且以線段AB為直徑的圓過點(diǎn)C

①證明:直線l過定點(diǎn),并求出該定點(diǎn)坐標(biāo);

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖兩個(gè)同心球,球心均為點(diǎn),其中大球與小球的表面積之比為3:1,線段是夾在兩個(gè)球體之間的內(nèi)弦,其中兩點(diǎn)在小球上,兩點(diǎn)在大球上,兩內(nèi)弦均不穿過小球內(nèi)部.當(dāng)四面體的體積達(dá)到最大值時(shí),此時(shí)異面直線的夾角為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四面體中,是邊長為2的等邊三角形,為直角三角形,其中為直角頂點(diǎn),.分別是線段上的動點(diǎn),且四邊形為平行四邊形.

1)求證:平面,平面;

2)試探究當(dāng)二面角增加到90°的過程中,線段在平面上的投影所掃過的平面區(qū)域的面積;

3)設(shè),且為等腰三角形,當(dāng)為何值時(shí),多面體的體積恰好為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)關(guān)于圓錐曲線命題:

曲線為橢圓的充分不必要條件是

②若雙曲線的離心率,且與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為;

③拋物線的準(zhǔn)線方程為;

④長為6的線段的端點(diǎn)分別在、軸上移動,動點(diǎn)滿足,則動點(diǎn)的軌跡方程為

其中正確命題的序號為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)探究函數(shù)上的單調(diào)性;

(2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案