【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

【答案】A

【解析】

先設圓的半徑為,表示出圓的面積和正六邊形的面積,再由題中所給概率,即可得出結果.

設圓的半徑為,則圓的面積為,正六邊形的面積為,因而所求該實驗的概率為,則.

故選A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了了解小學生的體能情況,抽取了某小學同年級部分學生進行跳繩測試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖,已知圖中從左到右的前三個小組的頻率分別是0.1,0.30.4第一小組的頻數(shù)是5.

1)求第四小組的頻率和該組參加這次測試的學生人數(shù);

2)在這次測試中,學生跳繩次數(shù)的中位效落在第幾小組內?

3)從第一小組中選出2人,第三小組中選出3人組成隊伍代表學校參加區(qū)里的小學生體質測試,在測試的某一環(huán)節(jié),需要從這5人中任選兩人參加測試,求這兩人來自同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,,,平面,分別是的中點.

)求證:平面;

)若與平面所成的角為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點,.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,PA=PD=CD=BC=1.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P是橢圓上一點,M,N分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調查,對手機進行評分,評分的頻數(shù)分布表如下:

女性用戶

分值區(qū)間

[50,60

[6070

[70,80

[8090

[90,100]

頻數(shù)

20

40

80

50

10

男性用戶

分值區(qū)間

[5060

[60,70

[7080

[80,90

[90100]

頻數(shù)

45

75

90

60

30

(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥嬎憔唧w值,給出結論即可);

(2)把評分不低于70分的用戶稱為評分良好用戶,能否有的把握認為評分良好用戶與性別有關?

參考附表:

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣bx+lnx,(a,b∈R).

(1)若a=1,b=3,求函數(shù)f(x)的單調增區(qū)間;

(2)若b=0時,不等式f(x)≤0在[1,+∞)上恒成立,求實數(shù)a的取值范圍;

(3)當a=1,b>時,記函數(shù)f(x)的導函數(shù)f(x)的兩個零點是x1和x2(x1<x2),求證:f(x1)﹣f(x2)>﹣3ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在交通工程學中,常作如下定義:交通流量(輛/小時):單位時間內通過道路上某一橫斷面的車輛數(shù);車流速度(千米/小時):單位時間內車流平均行駛過的距離;車流密度(輛/千米):單位長度道路上某一瞬間所存在的車輛數(shù). 一般的,滿足一個線性關系,即(其中是正數(shù)),則以下說法正確的是

A. 隨著車流密度增大,車流速度增大

B. 隨著車流密度增大,交通流量增大

C. 隨著車流密度增大,交通流量先減小,后增大

D. 隨著車流密度增大,交通流量先增大,后減小

查看答案和解析>>

同步練習冊答案