【題目】已知R為實(shí)數(shù)集,集合A={x|x>0},B={x|x2﹣x﹣2>0},則A∩(RB)=( )
A.(0,2]
B.(﹣1,2)
C.[﹣1,2]
D.[0,4]
【答案】A
【解析】解:R為實(shí)數(shù)集,集合A={x|x>0}, B={x|x2﹣x﹣2>0}={x|x<﹣1或x>2},
∴RB={x|﹣1≤x≤2},
∴A∩(RB)={x|0<x≤2}=(0,2].
故選:A.
【考點(diǎn)精析】利用交、并、補(bǔ)集的混合運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:
(1)A∩(B∩C);
(2)A∩CA(B∪C).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,lα,lβ,則( )
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α與β相交,且交線垂直于l
D.α與β相交,且交線平行于l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)9門課程供學(xué)生選修,其中A,B,C3門課由于上課時(shí)間相同,至多選1門,若學(xué)校規(guī)定每位學(xué)生選修4門,則不同選修方案共有種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=sin1﹣cosx,則f′(1)=( )
A.sin1+cos1
B.cos1
C.sin1
D.sin1﹣cos1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)內(nèi)近似解的過程中得f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間( )
A.(1,1.25)
B.(1.25,1.5)
C.(1.5,2)
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如表:
所用的時(shí)間(天數(shù)) | 10 | 11 | 12 | 13 |
通過公路l的頻數(shù) | 20 | 40 | 20 | 20 |
通過公路2的頻數(shù) | 10 | 40 | 40 | 10 |
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(I)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路l、公路2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元(其他費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到;每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,生產(chǎn)商將支付給銷售商2萬元.如果汽車A,B按(I)中所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤(rùn)更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的( )
A.必要不充分條件
B.充分不必要條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com