如圖邊長為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,已知△A′DE是△ADE繞DE旋轉(zhuǎn)過程中的一個(gè)圖形(點(diǎn)A′∉平面ABC),則下列命題中正確的是
 

①動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上;
②BC∥平面A′DE;
③三棱錐A′-FED的體積有最大值.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:由面A′FG⊥面ABC,可知點(diǎn)A′在面ABC 上的射影在線段AF 上;由已知可得四邊形ABCD 是菱形,從而面A′FG⊥面ABC;當(dāng)面A′DE⊥面ABC 時(shí),三棱錐A′-DEF 的體積達(dá)到最大.
解答: 解:在①中,由面A′FG⊥面ABC,
可知點(diǎn)A′在面ABC 上的射影在線段AF 上,∴①正確;
在②中,由已知可得四邊形ABCD 是菱形,
則DE⊥GA′,DE⊥GF,
∴DE⊥平面A′FG,∴面A′FG⊥面ABC,∴②正確;
在③中,∵BC∥DE,∴BC∥平面A′DE,
當(dāng)面A′DE⊥面ABC 時(shí),三棱錐A′-DEF 的體積達(dá)到最大,
最大值為
1
3
×
1
4
×
3
4
a2×
3
4
a
=
1
64
a3
,∴③正確.
故答案為:①②③.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x-1
x+1
(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論f(x)在(1,+∞)上的單調(diào)性,并用定義證明;
(3)令g(x)=1+logax,當(dāng)[m,n]?(1,+∞)(m<n)時(shí),f(x)在[m,n]上的值域是[g(n),g(m)],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,(n+2)an+1-(n+1)an=0(n∈N*),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,-3),且
AB
=(3,7),則B點(diǎn)的坐標(biāo)為(4,4).
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知PD垂直以AB為直徑的圓O所在平面,點(diǎn)D在線段AB上,點(diǎn)C為圓O上一點(diǎn),且BD=
3
PD=3,AC=2AD=2.
(1)求證:PA⊥CD;
(2)求點(diǎn)B到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐A-BCD中,AB=AC=BD=CD=2,BC=2AD=2
2
,則直線AD與底面BCD所成角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),AC⊥BC,且AC=BC.
(1)求證:AM⊥平面EBC;
(2)求異面直線EC與AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差為d的等差數(shù)列,{bn}是等比數(shù)列,函數(shù)f(x)=b1x2+b2x+b3的圖象在y軸上的截距為-4,其最大值為a6-
7
2

(Ⅰ)求a6的值;
(Ⅱ)若d≠0且f(a2+a8)=f(a3+a11),求數(shù)列{bn}的通項(xiàng)公式bn;
(Ⅲ)設(shè)Tn=
1
a6a7
+
1
a7a8
+…+
1
anan+1
(n≥6),若Tn的最小值為2,求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)A、B的坐標(biāo)分別為(-a,0),(a,0),(a>0).直線AM,BM相交于點(diǎn)M,若它們的斜率之積是m(m≠0),求點(diǎn)M的軌跡方程,并指出是何種曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案