下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的是(  )

A.y= B.y=|x|

C.y=x+ D.y=2-x-2x

 

D

【解析】因為函數(shù)y=|x|為偶函數(shù),故排除B;因為函數(shù)y=在(-∞,+∞)上為增函數(shù),故排除A;因為函數(shù)y=x+在[,+∞)上為增函數(shù),所以排除C,選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:解答題

已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.

(1)求實數(shù)m的值;

(2)作出函數(shù)f(x)的圖象并判斷其零點個數(shù);

(3)根據(jù)圖象指出f(x)的單調(diào)遞減區(qū)間;

(4)根據(jù)圖象寫出不等式f(x)>0的解集;

(5)求集合M={m|使方程f(x)=m有三個不相等的實根}.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:填空題

對任意實數(shù)a,b,函數(shù)F(a,b)=(a+b-|a-b|),如果函數(shù)f(x)=-x2+2x+3,g(x)=x+1,那么函數(shù)G(x)=F(f(x),g(x))的最大值等于________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:選擇題

若函數(shù)f(x)、g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=ex,則有(  )

A.f(2)<f(3)<g(0) B.g(0)<f(3)<f(2)

C.f(2)<g(0)<f(3) D.g(0)<f(2)<f(3)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:選擇題

若f(x)為奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(-2)=0,則xf(x)<0的解集為(  )

A.(-2,0)∪(0,2) B.(-∞,-2)∪(0,2)

C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:解答題

已知函數(shù)f(x)=a-.

(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);

(2)若f(x)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:選擇題

已知函數(shù)f(x)滿足2f(x)-f()=,則f(x)的值域為(  )

A.[2,+∞) B.[2,+∞)

C.[3,+∞) D.[4,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:選擇題

若f(x)對于任意實數(shù)x恒有2f(x)-f(-x)=3x+1,則f(x)=(  )

A.x-1 B.x+1 C.2x+1 D.3x+3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運算(解析版) 題型:填空題

如圖,函數(shù)g(x)=f(x)+x2的圖象在點P處的切線方程是y=-x+8,則f(5)+f′(5)=________.

 

 

查看答案和解析>>

同步練習(xí)冊答案