設(shè)函數(shù),其中;

(1)若的最小正周期為,求的單調(diào)增區(qū)間;(7分)

(2)若函數(shù)的圖象的一條對(duì)稱(chēng)軸為,求的值.(7分)

 

【答案】

(1)的單調(diào)增區(qū)間為: (2) 

【解析】

試題分析:(1)                     1分

                          3分

                          5分

得,                 

所以,的單調(diào)增區(qū)間為:         8分

(2)的一條對(duì)稱(chēng)軸方程為

                          10分

                                        12分

,                   14分

若學(xué)生直接這樣做:的一條對(duì)稱(chēng)軸方程為

                      則得分為  11分

考點(diǎn):本題主要考查三角函數(shù)圖象和性質(zhì),三角函數(shù)恒等變換。

點(diǎn)評(píng):典型題,此類(lèi)題型是高考必考題型,對(duì)三角函數(shù)知識(shí)有較全面的考查,牢記三角公式及三角函數(shù)的性質(zhì)是解題的關(guān)鍵。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省嵊泗中學(xué)高二第二學(xué)期5月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分15分)
設(shè)函數(shù),其中,
(1)求函數(shù)的極值和單調(diào)區(qū)間;;w
(2)已知函數(shù)有3個(gè)不同的零點(diǎn),且 ,若對(duì)任意的,恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013上海市奉賢區(qū)高考一模文科數(shù)學(xué)試卷(帶解析) 題型:解答題

設(shè)函數(shù),其中;
(1)若的最小正周期為,求的單調(diào)增區(qū)間;(7分)
(2)若函數(shù)的圖象的一條對(duì)稱(chēng)軸為,求的值.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省常州市奔牛高級(jí)中學(xué)高考數(shù)學(xué)三模試卷(解析版) 題型:解答題

設(shè)函數(shù),其中|t|<1,將f(x)的最小值記為g(t),則函數(shù)g(t)的單調(diào)遞增區(qū)間為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省馬鞍山市高三第一次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù),其中實(shí)數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間上均為增函數(shù),求a的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆河北省高二下學(xué)期期末考試文科數(shù)學(xué)(A卷) 題型:解答題

設(shè)函數(shù),其中,。

(1)若,求曲線點(diǎn)處的切線方程;

(2)是否存在負(fù)數(shù),使對(duì)一切正數(shù)都成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案